例2-5 整数划分问题;例2-6汉诺塔问题

整数划分问题 

  • n=m1+m2+...+mi; (其中mi为正整数,并且1 <= mi <= n),则{m1,m2,...,mi}为n的一个划分。
  • 如果{m1,m2,...,mi}中的最大值不超过m,即max(m1,m2,...,mi)<=m,则称它属于n的一个m划分。这里我们记n的m划分的个数为f(n,m);
  • 举个例子,当n=5时我们可以获得以下这几种划分(注意,例子中m>=5)

5 = 5 
   = 4 + 1 
   = 3 + 2 
   = 3 + 1 + 1 
   = 2 + 2 + 1 
   = 2 + 1 + 1 + 1 
   = 1 + 1 + 1 + 1 + 1

 

递归

分为4种情况:

(1)当 n=1 或 m=1 时 q(n,m)=1,因为只能划分为全 1 的情况,即

  • f(n, m)= 1; (n=1 or m=1)

(2)当m>n时q(n,m)=1,只有一种情况。

  • f(n, m)=f(n, n); (n<m)

(3)当n==m时q(n,n):此时就是对n的划分出来的数没有限制,默认限制就是不大于n,此时划分的总类数要分两种情况才比较好解决:

           1.划分出来的数包含n本身:那只有一种方式 比如 6的划分 只有 6;只有一种方式

           2.划分出来的数不包含n本身:就可以认为是将6划分出来的数都小于6,其实就是都小于或等于5, 即q(n,m-1) 

  •  综合起来 q(n,n)=1+q(n,m-1)

(4)当n>m>1时:可以看成是n==m的情况加上n<=m-1的情况,向下递归

  • f(n-m,m)+f(n,m-1); (n>m)

实现

 

#include <iostream>

using namespace std;

int f(int n,int m)	//从k到m进行全排列
{
	if (n == 1 || m == 1)
	{
		return 1;
	}
	else if (m > n)
	{
		return f(n, n);
	}
	else if (m == n)
	{
		return 1 + f(n, m - 1);
	}
	else if (n > m&&m > 1)
	{
		return f(n - m, m) + f(n, m - 1);
	}
}

int main()
{
	int n, m;
	cin >> n >> m;
	cout<<f(n, m);	//输出可能情况数目
	return 0;
}

 

汉诺塔问题

整体思想,借助第三根柱子,把第一根柱子上的圆盘,按照大盘在下的顺序移动到第二根柱子上。

 

#include <iostream>

using namespace std;

void move(char a, char b)
{
	cout << a << "->" << b << endl;
}

void hanoi(int n,char a,char b,char c)	//a,b,c的类型可以是int,1,2,3
{
	if (n >= 1)
	{
		hanoi(n-1,a, c, b);    //这一步可以理解成,a到c
		move(a, b);
		hanoi(n-1,c, b, a);    //这一步理解成,c到b
	}
}

int main()
{
	int n, m;
	cin >> n;
	hanoi(n, 'a','b','c');	
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值