整数划分问题
- n=m1+m2+...+mi; (其中mi为正整数,并且1 <= mi <= n),则{m1,m2,...,mi}为n的一个划分。
- 如果{m1,m2,...,mi}中的最大值不超过m,即max(m1,m2,...,mi)<=m,则称它属于n的一个m划分。这里我们记n的m划分的个数为f(n,m);
- 举个例子,当n=5时我们可以获得以下这几种划分(注意,例子中m>=5)
5 = 5
= 4 + 1
= 3 + 2
= 3 + 1 + 1
= 2 + 2 + 1
= 2 + 1 + 1 + 1
= 1 + 1 + 1 + 1 + 1
递归
分为4种情况:
(1)当 n=1 或 m=1 时 q(n,m)=1,因为只能划分为全 1 的情况,即
- f(n, m)= 1; (n=1 or m=1)
(2)当m>n时q(n,m)=1,只有一种情况。
- f(n, m)=f(n, n); (n<m)
(3)当n==m时q(n,n):此时就是对n的划分出来的数没有限制,默认限制就是不大于n,此时划分的总类数要分两种情况才比较好解决:
1.划分出来的数包含n本身:那只有一种方式 比如 6的划分 只有 6;只有一种方式
2.划分出来的数不包含n本身:就可以认为是将6划分出来的数都小于6,其实就是都小于或等于5, 即q(n,m-1)
- 综合起来 q(n,n)=1+q(n,m-1)
(4)当n>m>1时:可以看成是n==m的情况加上n<=m-1的情况,向下递归
- f(n-m,m)+f(n,m-1); (n>m)
实现
#include <iostream>
using namespace std;
int f(int n,int m) //从k到m进行全排列
{
if (n == 1 || m == 1)
{
return 1;
}
else if (m > n)
{
return f(n, n);
}
else if (m == n)
{
return 1 + f(n, m - 1);
}
else if (n > m&&m > 1)
{
return f(n - m, m) + f(n, m - 1);
}
}
int main()
{
int n, m;
cin >> n >> m;
cout<<f(n, m); //输出可能情况数目
return 0;
}
汉诺塔问题
整体思想,借助第三根柱子,把第一根柱子上的圆盘,按照大盘在下的顺序移动到第二根柱子上。
#include <iostream>
using namespace std;
void move(char a, char b)
{
cout << a << "->" << b << endl;
}
void hanoi(int n,char a,char b,char c) //a,b,c的类型可以是int,1,2,3
{
if (n >= 1)
{
hanoi(n-1,a, c, b); //这一步可以理解成,a到c
move(a, b);
hanoi(n-1,c, b, a); //这一步理解成,c到b
}
}
int main()
{
int n, m;
cin >> n;
hanoi(n, 'a','b','c');
return 0;
}