以全排列问题、八皇后问题为例深入理解递归与分治的编程思想

本文深入探讨递归与分治编程思想,通过全排列和八皇后问题举例说明。全排列问题利用递归划分以特定数字开头的子问题,而八皇后问题借助全排列算法,通过回溯法降低枚举量,提高效率。学习过程中,作者发现解法的创新之处,并提供了相关资源链接。
摘要由CSDN通过智能技术生成

一、什么是递归与分治?

通过最近的对数据结构的学习以及看了很多博主给出的解决全排列还有八皇后问题的算法,对于递归和分治我有了更深入的理解。分治可以理解成是把一个问题划分成很多性质、模式都与这个问题相似或一致的子问题,同样,子问题也可以再重新划分成更多的子问题,这样就可以通过相似的算法来解决各个子问题,最后把这些结果合并即得到了所要解决的问题的解,而递归恰恰是实现分治思想的好方法。

例如:二叉树的前中后序的递归遍历算法、最大子列和的分治算法、经典的斐波那契数列的递归算法、汉诺塔问题等等都是递归与分治思想的应用。

二、全排列问题

把1到n这n个整数按某个顺序摆放的结果称为这n个整数的一个排列,全排列即是所有可能排列的一个集合;

以递归和分治的思想来考虑这个问题的话,那么输出1~n这n个数字的全排列就可以被划分成输出以1开头的全排列、输出以2开头的全排列等等子问题,这是算法的核心思想,最后这个算法用到了最简单的散列表,设置了一个hashTable来记录某个数是否已经在排列中了;

值得注意的是递归的递归边界!

#include<cstdio>
#include<iostream>
using namespace std;

const int maxn=11;
/*p为当前排列,hashTable[maxn]记录整数是否已经在p中*/
int n,p[maxn],hashTable[maxn]={false};

void generateP(int index){
	if(index==n+1){//递归边界 
		for(int i=1;i<=n;i++){
			cout<<p[i];
		}
		cout<<endl;
		return
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值