以全排列问题、八皇后问题为例深入理解递归与分治的编程思想

一、什么是递归与分治?

通过最近的对数据结构的学习以及看了很多博主给出的解决全排列还有八皇后问题的算法,对于递归和分治我有了更深入的理解。分治可以理解成是把一个问题划分成很多性质、模式都与这个问题相似或一致的子问题,同样,子问题也可以再重新划分成更多的子问题,这样就可以通过相似的算法来解决各个子问题,最后把这些结果合并即得到了所要解决的问题的解,而递归恰恰是实现分治思想的好方法。

例如:二叉树的前中后序的递归遍历算法、最大子列和的分治算法、经典的斐波那契数列的递归算法、汉诺塔问题等等都是递归与分治思想的应用。

二、全排列问题

把1到n这n个整数按某个顺序摆放的结果称为这n个整数的一个排列,全排列即是所有可能排列的一个集合;

以递归和分治的思想来考虑这个问题的话,那么输出1~n这n个数字的全排列就可以被划分成输出以1开头的全排列、输出以2开头的全排列等等子问题,这是算法的核心思想,最后这个算法用到了最简单的散列表,设置了一个hashTable来记录某个数是否已经在排列中了;

值得注意的是递归的递归边界!

#include<cstdio>
#include<iostream>
using namespace std;

const int maxn=11;
/*p为当前排列,hashTable[maxn]记录整数是否已经在p中*/
int n,p[maxn],hashTable[maxn]={false};

void generateP(int index){
	if(index==n+1){//递归边界 
		for(int i=1;i<=n;i++){
			cout<<p[i];
		}
		cout<<endl;
		return;
	}
	for(int x=1;x<=n;x++){
		if(hashTable[x]==false){
			p[index]=x;//令p的index位为x
			hashTable[x]=true;
			generateP(index+1);//进入下一层循环处理下一位数字
			hashTable[x]=false;//已处理完当前位,还原状态 
		}
	}
}

int main(){
	n=3;
	generateP(1);//从1开始填 
	return 0;
}

这是我大概写了一个递归调用的示意图,虽然并没有展示出完整的过程,但是我觉得意思是到位了,因为递归的实现就是用栈来实现的。这个递归调用第一次输出的排列是{1,2,3},第二次是{1,3,2},第三次是{2,1,3},第四次是{2,3,1},第五次是{3,1,2},第六次是{3,2,1},即以字典序来输出的。

三、八皇后问题

这个问题是一个非常经典的题目,网上有很多不同的解法,我这里给出的是回溯法,会发现实际上运用了上面讲到的全排列的算法,使用全排列来解决八皇后问题的关键就在于用数字代表行号,而用数字之间的相对位序代表列号,以空间换时间,从而把八皇后的枚举量降低到了n!,大大提升了算法效率(如果暴力地使用枚举,利用排列组合地知识很容易计算出解决八皇后问题的相应的枚举量是54,502,232,枚举量过大,难以承受!);

/*@坚定qinyantang               */
/*2018/4/17                     */
 
#include<iostream>
#include<algorithm>
using namespace std;
int n,p[9],hashTable[9]={false};
int logical=0;//记录合法方案数

void generateP(int index){
	if(index==n+1){
		logical++;
		return;
	}
	for(int x=1;x<=n;x++){
		if(hashTable[x]==false){//第x行没有皇后 
			bool flag=true;//falg记录当前皇后是否和之前已放置的皇后有冲突 
			for(int i=1;i<index;i++){
				if(abs(index-i)==abs(x-p[i])){//index列的皇后行号为x,i列的为p[i] 
					flag=false;//皇后在对角线上存在冲突 
					break;
				}
			}
			if(flag){
				p[index]=x;
				hashTable[x]=true;
				generateP(index+1);
				hashTable[x]=false;
			} 
		}
	}
} 

int main(){
	n=8;
	generateP(1);
	cout<<logical<<endl;
	return 0;
}

通过这两个例子的学习,我对于递归和分治有了更深入的理解,而且在解决八皇后的算法上,查了很多资料,发现了很多个人认为有价值或者有意思的东西,下面附上链接:

1、如何用c++在10行之内写出八皇后:https://www.zhihu.com/question/28543312

2、八皇后问题四种解法详解:https://blog.csdn.net/codes_first/article/details/78474226

阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页