一 、背景
在机器学习以及大模型的架构中, 神经网络都是非常重要的概念, 弄懂了神经网络的原理, 对于后面的学习会加速, 本文会介绍神经网络的基本概念, 然后手搓一个神经网络, 看完本文绝对能懂
注: 本文所有内容都通过AI来验证过, 所以小白们放心去看, 通俗易懂
二 、 神经网络的重要性
首先来了解一下神经网络在机器学习的位置,也就是重要性。
从下图中可知,神经网络是深度学习的基础,搞懂神经网络,既能理解深度学习的核心思想,也相当于掌握了 Transformer 的三分之一。
三、前置知识
一般深度学习里面, 用的都是全连接神经网络,如下图所示
可以看出,全连接神经网络解决的是给定输入算出输出,输出可以是概率、分布,也能是 0 或 1。
里面每个神经元的功能也是通过输入来计算出输出。
如果用一个放大镜来放大这个神经元, 里面包括两个操作 : 计算input + 激活。
用小白能懂的话来解释,就是这个神经元怎么来通过input计算出output的值,以及这个output 需不需要参与到整个网络的计算中?
- 怎么通过input计算出output -> 加权平均
- output要不要参与整张网的计算中 -> 激活函数
用图来表示,如下:
到这里,总结一下
- 全连接神经网络解决的是给定输入算出输出,输出可以是概率、分布,也能是 0 或 1
- 每个神经元通过加权平均来计算output, 通过激活函数来决定output参不参与整张网络的计算