普通10进制转换为二进制的方法是除数取余法。
0位数字的十进制数,查阅以后发现long long int型的范围大约是10^18,不足以表示10^30。所以这题的思路是用数组存储这个数值,然后用数组的方式模拟除数取余法:
①数组最后一个数,就是10进制数的尾数,尾数对2取余的值
②数组表示的这个10进制数,不断除以2。
例子:b[]存放一个十进制数,比如13,所以b[0-1]={1,3},num[]数组存放尾数%2值,也就是最终二进制的倒序存放
a.13,尾数3,3%2=1,num[0]=1;
b.12告我是1,1/2=0, 由于首位是奇数,奇数不能整除2,所以低位3+10=13,让低位这个数来除,(3+10)/2=6,
从而b[]数组变成b[]={0,6},再循环a.b, 数组的值依次变成:
{0,6}->{0,3}->{0,1}->{0,0}, 过程中num[]={1,0,1,1}
所以13 = (1101)2;
下面给出代码:
#include <stdio.h>
#include <string.h>
int main()
{
char snum[32];
int b[32];
while(scanf("%s", snum) != EOF)
{
int i=0,len = strlen(snum);
//字符串转为整数,存到数组b[]中
for(i=0; i<len; i++)
b[i] = snum[i] -'0';
//对数组b[]模拟除商取余
i=0;
char num[200];
int k=0, cf, j,temp; //cf是进位
while(i<len)
{
num[k++] = (b[len-1] % 2) + '0'; //尾数取余,并存到二进制表示数组中
//对整个剩余的值除以2,从第i个位置到结束
cf=0; //每一轮cf都要清0
for(j=i; j<len; j++)
{
temp = b[j];
b[j] = (b[j] + cf)/2; //b[j]+cf进位10
if(temp % 2 == 1)
cf = 10;
else
cf = 0;
}
if(b[i] == 0) //高位如果变为0,处理下一个位置
i++;
}
//输出
for(j=k-1; j>=0;j--)
printf("%c",num[j]);
printf("\n");
}
return 0;
}