HDFS
简介
-
HDFS(Hadoop Distributed File System)是Hadoop提供的一套用于进行分布式存储的文件系统
-
HDFS是仿照了Google的GFS来实现的
技术结构
概述
-
HDFS典型的主从(Master/Slave,简称为M/S)结构。主进程是NameNode,从进程是DataNode
-
HDFS会对上传的每一个文件进行切块处理,切出来的每一个数据块称之为是一个Block
-
HDFS会对存储的每一个Block进行备份,称之为副本(replication/replicas)。默认情况下,副本数量为3
-
HDFS仿照Linux设计了一套虚拟文件系统,根路径是
/
Block
-
在HDFS中,Block是数据存储的基本单位。即,上传的每一个文件都会被切分成Block形式
-
Block最终会落地到DataNode的磁盘上
-
在Hadoop1.x中,Block默认是64M,从Hadoop2.X开始,每一个Block的大小是
134217728B
(即128MB)。Block的大小可以通过dfs.blocksize
属性来调节,放在hdfs-site.xml
文件中,单位是字节。如果一个文件是1G大小,上传到HDFS上之后,会被切分成8个Block<property> <name>dfs.blocksize</name> <value>134217728</value> </property>
-
如果一个文件大小不足Block的指定大小,那么这个文件是多大,对应的Block就是多大!例如:一个文件是300M大小,对应了3个Block:2*128+44。所以blocksize指定的Block的最大容量
-
在设计Block大小的时候,考虑Block在磁盘上的寻址时间和写入时间的比例。经过测试,一般而言,当寻址时间是写入时间的1%的时候,此时效率是最高的。大部分磁盘的寻址时间大约是10ms,那么就意味着写入时间大约是10ms*100=1000ms=1s的时候,效率最高。目前市面上,服务器基本上都是采用机械磁盘,大部分机械磁盘的写入速度是100MB/s~150MB/s,那么就意味着Block的大小在100M~150M之间。考虑到计算机中的存储单位进制的问题,所以采用了128M(1G=8*128)
-
HDFS会为每一个Block分配一个全局递增且唯一的BlockID
-
切块的意义:能够存储超大文件。基于切块机制下,无论文件多大,都能够进行存储。换言之,集群规模越大,能够存储的文件就越大
NameNode
概述
-
NameNode是HDFS的主进程,也是核心进程。在Hadoop1.x中只允许存在1个NameNode,在Hadoop2.x允许最多存在2个NameNode(1个Active+1个Standby),在Hadoop3.x中不再限制NameNode的数量(1个Active+n个Standby)
-
作为主进程,NameNode对外负责接收请求,对内负责记录元数据和管理DataNode
记录元数据
-
元数据(metadata)是用于描述数据的数据。在HDFS中,元数据是用于描述DataNode上存储文件的数据,可以理解为账本
-
HDFS中,元数据的内容非常复杂,包含了三十多项,例如:
-
上传的文件名以及对应的虚拟存储路径
-
文件的所属用户和用户组
-
文件的权限
-
文件的大小
-
Block的大小
-
文件和BlockID的映射关系
-
副本的数量
-
Block和DataNode的映射关系等
-
-
在HDFS中,每一条元数据大小大约是150B左右
-
NameNode会将元数据维系在内存以及磁盘中
-
维系在内存中的目的是为了读写快
-
维系在磁盘上的目的是为了持久化
-
-
元数据在磁盘上的存储位置由
dfs.namenode.name.dir
属性来决定,默认值是file://${hadoop.tmp.dir}/dfs/name
,引用了hadoop.tmp.dir
属性的值。hadoop.tmp.dir
的默认值是/tmp/hadoop-${user.name}
,此时就意味着必须修改这个存储路径 -
在HDFS中,和元数据相关的文件
-
edits文件:记录HDFS的写操作文件
-
fsimage文件:元映像文件,记录的是HDFS的元数据
-
-
当NameNode接收到写请求的时候,首先会将这个命令解析记录到edits_inprogress文件中。记录完成之后,会更新内存中的元数据。更新完成之后,会给客户端返回一个ACK信号表示记录成功。注意,在这个过程中,fsimage文件中的元数据没有更新!也就意味着,fsimage文件中的元数据和内存中的元数据不是同步的!!!
-
当达到指定条件之后,edits_inprogress文件就会产生滚动,滚动生成edits文件,同时产生一个新的edits_inprogress文件,新来的写操作记录到新的edits_inprogress文件中。生成edits文件之后,HDFS会解析edits文件,根据edits文件的内容,更新fsimage文件中的元数据
-
edits_inprogress的滚动条件
-
空间:默认情况下,每隔1min(可以通过
dfs.namenode.checkpoint.check.period
属性来调节,单位是秒,默认值是60)扫描一次edits_inprogress文件。当扫描edits_inprogress文件的时候,发现达到指定大小(可以通过dfs.namenode.checkpoint.txns
属性来调节,默认值是1000000,即edits_inprogress文件中记录达到1000000条)之后,会自动滚动生成edits文件 -
时间:当距离上一次滚动达到指定的时间间隔(可以通过
dfs.namenode.checkpoint.period
属性来调节,默认值是3600,单位是秒)的时候,edits_inprogress文件自动滚动生成edits文件 -
重启:当NameNode被重启的时候,也会自动触发edits_inprogress的滚动
-
强制:可以通过命令
hdfs dfsadmin -rollEdits
来强制滚动edits_inprogress
-
-
查看edits文件
hdfs oev -i edits_0000000000000000012-0000000000000000028 -o a.xml
-
HDFS会给每一给写操作一个递增的编号,称之为事务id,简写为txid
-
在HDFS中,会将开始记录日志(OP_START_LOG_SEGMENT)和结束记录日志(OP_END_LOG_SEGMENT)都看作是写操作,都会分配一个事务id
-
上传文件的时候,NameNode如何拆分的命令
-
OP_ADD:在指定路径下添加
文件名._COPYING_
文件 -
OP_ALLOCATE_BLOCK_ID:分配BlockID(意味着对文件进行切块)
-
OP_SET_GENSTAMP_V2:设置时间戳编号
-
OP_ADD_BLOCK:上传(添加)Block
-
OP_CLOSE:关闭文件(本质上就是关流)
-
OP_RENAME_OLD:重命名文件
-
-
在HDFS中,文件一旦写完就不能修改!!!(HDFS中的文件不允许被修改!!!)
-
查看fsimage文件
hdfs oiv -i fsimage_0000000000000000033 -o a.xml -p XML
-
HDFS第一次启动之后1min,会自动触发一次edits_inprogress文件的滚动
-
NameNode会为每一个fsimage文件生成一个md5文件,用于对fsimage文件进行校验
管理DataNode
-
NameNode通过心跳(heart beat)机制来管理DataNode:DataNode定时(通过
dfs.heartbeat.interval
属性来调节,默认值是3,单位是秒)给NameNode发送心跳信号。如果在一定时间内,NameNode没有收到DataNode的心跳信号,那么就表示这个DataNode已经lost(丢失),此时NameNode就会将这个DataNode上的数据重新备份到其他的DataNode上以保证整个集群中的副本数量 -
需要注意的是,心跳超时时间由两个属性决定:
dfs.heartbeat.interval
和dfs.namenode.heartbeat.recheck-interval
属性 默认值 单位 dfs.heartbeat.interval
3 秒 dfs.namenode.heartbeat.recheck-interval
300000 毫秒 心跳超时时间=2*
dfs.namenode.heartbeat.recheck-interval
+10*dfs.heartbeat.interval
,默认情况下,心跳超时时间=2*5min+10*3s=10min30s -
心跳信号
-
clusterid:集群编号。
-
当NameNode被格式化(
hdfs namenode -format
)的时候,自动计算产生一个clusterid -
HDFS启动之后,DataNode第一次给NameNode发送心跳,NameNode会在心跳响应中将clusterid返回给这个DataNode,并且要求DataNode在后续的请求(包括心跳)中携带clusterid
-
当NameNode收到DataNode的请求之后,会校验clusterid是否一致。如果clusterid一致,那么NameNode才会接收DataNode的请求或者心跳,如果不一致,那么可能会导致DataNode进程或者NameNode进程结束
-
每一次格式化,NameNode都会重新计算产生一个新的clusterid
-
-
当前DataNode的状态(预服役、服役、预退役)
-
-
默认情况下,DataNode每隔6个小时(由
dfs.blockreport.intervalMsec
属性来调节,单位是毫秒,默认值是21600000),会给NameNode汇报一次当前DataNode上存储的Block情况
安全模式(safemode)
-
当NameNode被重启的时候,自动进入安全模式
-
在安全模式中,NameNode首先会触发edits_inprogress文件的滚动。滚动完成之后,更新fsimage文件
-
更新完成之后,NameNode会将fsimage文件中的元数据加载到内存中。加载完成之后,NameNode等待DataNode的心跳
-
如果NameNode没有收到DataNode的心跳,那么此时NameNode就会认为这个DataNode已经lost,那么此时NameNode会将这个DataNode上的数据备份到其他的节点上来保证副本数量;如果NameNode收到了DataNode的心跳,那么会对这个DataNode上的Block存储情况进行校验。如果校验成功,那么NameNode自动退出安全模式;如果校验失败,那么NameNode会试图恢复这个DataNode上的数据,恢复完成之后,会重新校验;校验成功之后,才会退出安全模式
-
在安全模式下,HDFS只提供读(下载)操作,不提供写(上传)操作
-
如果在合理的时间内,HDFS依然没有退出安全模式,那么说明数据已经产生了不可逆的损坏或者丢失(这个数据的所有副本都损坏或者丢失)
-
安全模式的命令
命令 解释 hdfs dfsadmin -safemode enter
进入安全模式 hdfs dfsadmin -safemode leave
退出安全模式 hdfs dfsadmin -safemode get
获取安全模式的状态
DataNode
-
DataNode是HDFS的从进程,负责存储数据。DataNode会将数据以Block形式落地到本地的磁盘上
-
Block在磁盘上的存储位置由
dfs.datanode.data.dir
属性来决定的,默认值是file://${hadoop.tmp.dir}/dfs/data
,由hadoop.tmp.dir
属性来决定 -
DataNode会为每一个Block生成一个.meta文件,.meta文件实际上是这个Block的校验文件
-
DataNode会通过心跳向NameNode注册信息
-
DataNode的状态:预服役、服役、预退役、退役