南邮 OJ 1652 翻转棋

本文深入探讨了信息技术领域的核心概念与应用实例,涵盖了从基础到进阶的多个技术领域,包括前端开发、后端开发、移动开发、游戏开发等,并详细介绍了大数据开发、开发工具、嵌入式开发环境等细分技术。此外,文章还涉及音视频基础、音视频直播流媒体、图像处理AR特效、AI音视频处理、测试、基础运维、DevOps、操作系统、云计算厂商、自然语言处理、区块链、隐私计算等多个专业方向,旨在为读者提供全面的技术知识框架。

翻转棋

时间限制(普通/Java) : 1000 MS/ 3000 MS          运行内存限制 : 65536 KByte
总提交 : 41            测试通过 : 20 

比赛描述

翻转棋的棋盘上有64颗棋子,排列成8×8的矩阵。每颗棋子的正反两面分别被涂成白色和黑色。在初始状态下,其中有一些棋子正面朝上(白色),其余的则背面朝上(黑色)。你可以进行如下翻转操作——翻转任意一颗棋子,与此同时与它相邻的上下左右四颗棋子也必须一同翻面。现在给出棋盘的初始状态,请编程计算出至少要进行多少次翻转操作才能让所有的棋子黑色的一面朝上。



输入

输入的第一行是一个正整数N,代表有N组输入数据。每组数据包含一个8×8的矩阵表示棋盘的初始状态,‘0’代表白色,‘1’代表黑色。两组数据之间以一个空白行分隔。

输出

对于每一组输入数据,输出一行“Case #: n”。其中‘#’为这一组输出的序号,n为让所有棋子反面向上最少所需的翻转次数。

样例输入

2
10111111
00011111
10111111
11111111
11111111
11111111
11111111
11111111

10110001
00011011
10111111
11111111
11111011
11110001
11111111
11110001

样例输出

Case 1: 1
Case 2: 4

提示

 

题目来源

lithium





#include<iostream>

#define N 8
char a[N][N];
char b[N][N];
int dx[4] = { 0, 0,-1, 1};
int dy[4] = {-1, 1, 0, 0};
int minCount;

void convert(int i,int j){
	int k,x,y;
	b[i][j] = !b[i][j];
	for(k=0;k<4;k++){
		x = i+dx[k];
		y = j+dy[k];
		if(x>=0 && x<N && y>=0 && y<N){
			b[x][y] = !b[x][y];
		}
	}
}

void handle(int k){
	int i,j,count=0;
	for(i=0;i<N;i++){
		for(j=0;j<N;j++){
			b[i][j] = a[i][j];
		}
	}
	for(j=0;j<N;j++){
		if(k & (1<<j)){
			convert(0,j);
			count++;
		}
	}
	for(i=1;i<N;i++){
		for(j=0;j<N;j++){
			if(0==b[i-1][j]){
				convert(i,j);
				count++;
			}
		}
	}
	for(j=0;j<N;j++){
		if(b[N-1][j]==0){
			return;
		}
	}
	if(count < minCount){
		minCount = count;
	}
}

int main(){
//	freopen("test.txt","r",stdin);
	int t,i,j,k;
	scanf("%d",&t);
	getchar();
	for(int cas=1;cas<=t;cas++){
		minCount = INT_MAX;
		for(i=0;i<N;i++){
			for(j=0;j<N;j++){
				a[i][j] = getchar();
				a[i][j] -= '0';
			}
			getchar();
		}
		getchar();
//		for(i=0;i<N;i++){
//			for(j=0;j<N;j++){
//				printf("%d",a[i][j]);
//			}
//			printf("\n");
//		}
		for(k=0;k<255;k++){
			handle(k);
		}
		printf("Case %d: %d\n",cas,minCount);
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值