南邮 OJ 1220 独立任务最优调度问题

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/changshu1/article/details/47294211

独立任务最优调度问题

时间限制(普通/Java) : 1000 MS/ 3000 MS          运行内存限制 : 65536 KByte
总提交 : 164            测试通过 : 35 

比赛描述

用2台处理机A和B处理n个作业。设第i个作业交给机器A处理时需要时间ai,若由机器B来处理,则需要时间bi。由于各作业的特点和机器的性能关系,很可能对于某些i,有ai>bi,而对于某些j,j≠i,有aj>bj。既不能将一个作业分开由2台机器处理,也没有一台机器能同时处理2个作业。设计一个动态规划算法,使得这2台机器处理完这n个作业的时间最短(从任何一台机器开工到最后一台机器停工的总时间)。研究一个实例:

(a1,a2,a3,a4,a5,a6)=(2,5,7,10,5,2);(b1,b2,b3,b4,b5,b6)=(3,8,4,11,3,4)。

对于给定的2台处理机A和B处理n个作业,找出一个最优调度方案,使2台机器处理完这n个作业的时间最短。

输入

输入的第1行是1个正整数n,表示要处理n个作业。接下来的2行中,每行有n个正整数,分别表示处理机A和B处理第i个作业需要的处理时间。

输出

输出最短处理时间。

样例输入

6
2 5 7 10 5 2
3 8 4 11 3 4

样例输出

15

提示

 

题目来源

算法设计与实验题解



/*
问题分析:

此题目可以使用动态规划来做。难点是如何构造动态规划算法。找出最优子结构和递推公式。

有两种构造方法:

1.t[i][j][k],表示机器A花费小于等于i的时间,机器B花费小于等于j的时间能够完成前K个任务,取值为bool类型

递推公式如下:t[i][j][k]=t[i-a[k]][j][k-1]|t[i][j-b[k]][k-1],这种构造方法需要一个三维数组,空间和时间复杂度都相对较高

2.t[i][j],表示完成前i个任务,机器A花费小于等于j的时间的前提下,机器B所需要的最小时间。

递推公式如下:t[i][j]=min{t[i-1][j-a[i]],t[i-1][j]+b[i]},这种方法时间和空间复杂度相较于第一种方法较低。
							|任务k由A完成	|任务k由B完成
*/

#include<iostream>
using namespace std;

int task_schedule(int *a,int *b,int n){
	int i,j,sum=0,min=1<<30;
	for(i=0;i<n;++i){
		sum += a[i];
	}
	int **t=(int **)malloc(sizeof(int*)*(n+1));		//把t构造成int t[n+1][sum+1]
	for(i=0;i<=n;++i){
		t[i] = (int *)malloc(sizeof(int)*(sum+1));
		memset(t[i],0,sizeof(int)*(sum+1));
	}
	for(i=1;i<=n;++i){
		for(j=0;j<=sum;++j){
			if(j<a[i-1]){
				t[i][j] = t[i-1][j]+b[i-1];
			}else if(t[i-1][j-a[i-1]]>=(t[i-1][j]+b[i-1])){
				t[i][j] = t[i-1][j]+b[i-1];
			}else{
				t[i][j] = t[i-1][j-a[i-1]];
			}
		}
	}
	for(i=0;i<=sum;++i){
		j = t[n][i]>i ? t[n][i] : i;
		if(min>j){
			min = j;
		}
	}
	return min;
}

int main(){
	int n,i;
	cin>>n;
	int *a=new int[n];
	int *b=new int[n];
	for(i=0;i<n;++i){
		cin>>a[i];
	}
	for(i=0;i<n;++i){
		cin>>b[i];
	}
	cout<<task_schedule(a,b,n)<<endl;
}





阅读更多
换一批

没有更多推荐了,返回首页