网络流(Network Flow)

0) 引论

网络流问题是有实际应用来源的。个人觉得网络流应该是网络流量的意思,它限制了一个网络的最大流量问题。举个例子,对于一个给水网络,每条管道的最大流量是确定的,这就要求我们解决整个给水网络的流量问题;或者是交通网络,可以对每条道路的交通流量进行计算,使其不能超多最大的道路流量。


1) 数学模型

对于一个网络流我们可以用一个有向图G = (V,E,C)表示;V表示顶点的集合,E表示有向边的集合,C表示有向边的最大流量。对于每一个网络,有一个源输入点,称之为source,一个输出点,称之为sink。在不是出发点source也不是输出点sink的其他点,流量不能超过有向边的最大流量,这是一个约束条件。

下图就是一个简单的网络流模型:



2) 最大流问题

网络流的一个问题就是:最大流问题。最大流问题要求解决从source到sink能通过的最大的流量

我们下面来介绍一种简单的放法来解决这一问题。

首先我们需要引入几个概念。

我们称呼上面的图为原始图G;然后我们需要构建一个流图(Flow Graph)Gf,流图是我么算法用的图,最初为流量全部为0的图;最后G - Gf得到Gr,也就是残余图,如下图所示:


首先我们需要在Residual Graph中找到一个点s到点t的路径,假设为s,a,c,t,则在FLow Graph图上标示出来。


然后继续在Residual Graph中找到一个点s到点t的路径,假设为s,b,d,t,得到下面的结果


然后继续在Residual Graph中找到一个点s到点t的路径,为s,a,d,t,得到下面的结果


现在在Residual Graph中已经不存在从s到t的路径,因此网络的流图为Flow Graph,它模拟了网络中的流量。因此可以很方便的得到从Source到sink的最大流量为5 。

当然这里的例子只是巧合可以看到从s的两条输出为5,这跟网络的最大流没有什么关系,不是输入为5输出就是5,这只是一个例子上的巧合


3) 最大流算法的改进

上面的算法很简单,但是这个算法是有一点点小的缺陷的。如下面的例子所示

假设我们取得路径是s,a,d,t;那么就有问题了,从S到t已经没有路径了,而这明显不是最终的结果,因此需要对方法进行改进。

改进的方法是:每当我们选择了一个路径后,都要在Residual Graph中标示一个反方向的路径,后面的路径选取可以利用这些反向的路径


然后继续在Residual Graph中找到一个点s到点t的路径,为s,b,d,a,c,t,得到下面的结果


现在在Residual Graph中已经不存在从s到t的路径。改进后的方法具有较强的适应性。






评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值