动态规划
斐波那契数列
- int 32位溢出
class Solution {
public int fib(int n) {
if(n==0) return 0;
else if(n==1||n==2) return 1;
else
{
//0,1,1,2,3,
int prev=1;
int curr=1;
for(int i=3;i<=n;i++)
{
int tmp=(curr+prev)%1000000007;
prev=curr;
curr=tmp;
}
return curr;
}
}
}
凑零钱
- 注意初始化大小
- 最多不超过amount+1,要全初始化成这个
- 当前钱数等于减去硬币1+1/减去硬币2+1/减去硬币3+1 取最小值
class Solution {
public int coinChange(int[] coins, int amount) {
// ArrayList<integer> helper = new ArrayList<>();
int [] helper =new int [amount+1];
helper[0]=0;
for(int i=1;i<amount+1;i++)
{
helper[i]=amount+1;
for(int coin:coins)
//for(int coin;coincoins)
{
//if((i-coin) <0)continue;
//if(helper[i-coin]==Integer.MAX_VALUE) continue;
if(coin<=i)
{
helper[i]=Math.min(helper[i],helper[i-coin]+1);
}
}
}
if(helper[amount]>amount)
{
return -1;
}
return helper[amount];
}
}
// public class Solution {
// public int coinChange(int[] coins, int amount) {
// int max = amount + 1;
// int[] dp = new int[amount + 1];
// Arrays.fill(dp, max);
// dp[0] = 0;
// for (int i = 1; i <= amount; i++) {
// for (int j = 0; j < coins.length; j++) {
// if (coins[j] <= i) {
// dp[i] = Math.min(dp[i], dp[i - coins[j]] + 1);
// }
// }
// }
// return dp[amount] > amount ? -1 : dp[amount];
// }
// }
动态规划:
- 有重叠子问题
- 用个数组,让他原地重叠不要每次都老算
- 确定base case
- 确定
回溯:
- 枚举
- 找过的点一定要去除
- 判断结束?
- 判断是否选?
- 选择
- 进去选下一个
- 撤销选择
剪绳子
- 注意初值,如果绳长本身为2或3,由于不能不剪所以最大为2
- 但是在数组里,这个不是最大长度
class Solution {
public int cuttingRope(int n) {
if(n<2)return 0;
if(n==2)return 1;
if(n==3)return 2;
int [] product = new int[n+1];
product[0]=0;
product[1]=1;
product[2]=2;
product[3]=3;
for(int i=4;i<=n;i++)
{
int max=0;
for(int j=1;j<=i/2;++j)
{
int producti = product[j]*product[i-j];
if(max<producti)max=producti;
}
product[i]=max;
System.out.println(product[i]);
}
return product[n];
}
}