机器学习
机器学习的基础认识
Tine Chan
独立追根溯源思考
展开
-
查参考文献
李威2019/12/2517:12:29有些论文是没正式发表的,很多都是发表在这个上面,比如yolov3:https://dblp.uni-trier.de/rec/bibtex/conf/iclr/RamachandranZL18还有谷歌学术,百度学术...原创 2019-12-26 11:31:35 · 356 阅读 · 0 评论 -
机器学习拐弯点
1.线性回归:满足齐次,满足可加性2.多项式线性回归:变量代替法换成一元3.验证集误差不能作为测试集误差的原因?答:验证集选模型时,人为选最高,而测试集是自然的选择过程,为了方便,做一次测试集误差就代表了多次,效果都差不多4.不对称类数据:坏的数据少,好的数据多,为防止模型测试效果不太好,所以用测试了多少个病人,还有测的准确率,双重标准,使得结果可信度一定可信数据对称:好的和坏...原创 2019-12-15 17:50:35 · 160 阅读 · 0 评论 -
异常检测系统设计
从互斥面做算法,好的情况知道,坏的情况无限的情况下,可以做个相对来说可以包含好的情况数据集的算法,测到好的,就表示不坏;做不到测到坏的数据集相反,若数据集一半好一半坏,...原创 2019-12-15 17:51:25 · 421 阅读 · 0 评论 -
降维
主成分分析:挑出主要的维度原创 2019-12-15 17:51:36 · 122 阅读 · 0 评论 -
支持向量机(是逻辑回归的资源最大化)-复杂非线性
简化了优化目标函数,曲线分两段直线,计算上具有优势,具体是使得优化问题变得简单如果有两个人,那么另外一个人可以使得某个人很强,让剩下一个人很弱。也可以使得某个人很弱,让剩下那个人很强不是恰好能分类就行了,还需要准确无误,代价为0,没有概率一说C参数的设置,使得代价函数朝着相反的方向变化,C很大,代价为0,等价于在图中来看,对于所有类使得最大间隔,这种办法的缺点:对于异常点,就不能够最大...原创 2019-12-15 17:52:19 · 126 阅读 · 0 评论 -
正则化-过拟合
欠拟合-高偏差-模型选择误差大,数据再多无用过拟合-高方差,变量过多,次方高,波动大,数据过少的限制曲线数学手段解决过拟合问题疑问:加入正则化项后对于原有线性代价函数的影响,即拟合函数更复杂,但是可由参数来控制,以小代价的退找到进的条件...原创 2019-12-15 17:52:55 · 127 阅读 · 0 评论 -
逻辑回归-监督学习-分类
复合函数:变量是某个函数的输出,是某个函数的输入,g-z-x=h-x代价函数:心理落差,两行变一行简写多元分类:目标是识别出所有类,我可以用二分类一个个识别哲学:看待问题的角度...原创 2019-12-15 17:53:11 · 112 阅读 · 0 评论 -
初识机器学习
1.监督学习,即有输入、有输出的数据集学习一个模型,再次给类似数据集的输入,得到对应的输出,用于预测连续值和离散值2.无监督学习,即有输入,但是无输出的数据集,从某种衡量角度关注数据集的数据分布结构学习出模型,用于分类3.强化学习,对于之前的所有输出带有回报奖励函数去影响下一次输入的学习互属性:监督学习有分类和回归;无监督学习有分类;回归有无监督学习,分类有监督和无监督学习;选择大...原创 2019-12-15 17:54:10 · 116 阅读 · 0 评论 -
非度量方法(判定树和熵)
首先,来看下什么叫有度量方法。如下:生活中,有些事物可以用数字去衡量或者代为表示,用于比较同性质的量,这叫度量方法。 可是,对于整体来讲。不能用量化表示这个整体,比如2两的苹果,它并不等于苹果。所以呢,只能用非度量方法-语义(文字或符号)表示。而对于语义,判定树是一个很好的模型去给它和其他类型标记分类。判定树兼容数字和文字选择方式。熵的定义:表示不纯度,即混沌程度。对于分类来讲...原创 2019-12-15 17:54:24 · 694 阅读 · 0 评论 -
最大似然估计和最大后验概率估计(贝叶斯参数估计)
举个例子:偷盗的故事,三个村庄,五个人偷。村子被不同小偷偷的概率:P(村子|小偷1)、P(村子|小偷2)、P(村子|小偷3)小偷1的能力:P(偷盗能力)=P(村子1|小偷1)+P(村子2|小偷1)+P(村子3|小偷1)+P(村子4|小偷1)+P(村子5|小偷1)小偷2:...'''小偷5:...函数的其中一个要素:必须具有变量。概率函数:P(村子I小偷)里边的村...原创 2019-12-15 17:54:36 · 256 阅读 · 0 评论 -
统计和概率的区别
概率:是表达某件事情发生的情况;或者严格点讲,是把影响事件发生结果的其他方面因素考虑进去后发生的概率。例子:已知模型和参数,预测模型。比如约漂亮女生打羽毛球,场馆开馆,会预测下赴约的概率。而统计:是给出一堆数据,从数据中推断出一些最可能出现的一些信息。例子:已知数据,预测模型和参数。比如给出长头发,短裙,高跟鞋等数据,那么会更大可能的推断为是一个女生,进而可以推断她的身高等参数。一...原创 2019-12-15 17:54:45 · 6671 阅读 · 0 评论 -
贝叶斯决策理论
引言:一般来说,人们生活中所说的概率,是指描述某件事物发生的概率,而不考虑其他因素对事件发生概率的影响。比如说:投掷一枚骰子,正常情况下它出现每一面的概率都是1/6。若考虑稍周全点,骰子的体积小的和大的概率一定不一样。可知骰子的体积大小、质量密度等都会对出现结果的概率产生影响。后段话,用数学语言讲就是后验概率,即具有条件性。所谓先验概率,顾名思义,是前人总结好的概率,自己照搬。贝叶斯概...原创 2019-12-15 17:54:57 · 374 阅读 · 0 评论