本文可成功装载tensorflow/keras库环境的anaconda,并已测试使用
一、如何卸载
终端:rm -rf anaconda3
1.到根目录下,打开终端并输入:
sudo gedit ~/.bashrc
2.在.bashrc文件末尾用#号注释掉之前添加的路径(或直接删除):
#export PATH=/home/lq/anaconda3/bin:$PATH
保存并关闭文件
3.使其立即生效,在终端执行:
source ~/.bashrc
4.关闭终端,然后再重启一个新的终端,这一步很重要,不然在原终端上还是绑定有anaconda.
二、Tips
若使用tensorflow
建议安装anaconda3-5.2.0/python3.6,可在环境安装tensorflow(anaconda3-4.2.0/python3.5也可),附上链接:
https://repo.anaconda.com/archive/Anaconda3-5.2.0-Linux-x86_64.sh
https://repo.anaconda.com/archive/Anaconda3-4.2.0-Linux-x86_64.sh
https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-5.2.0-Linux-x86_64.sh
https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-4.2.0-Linux-x86_64.sh
不建议安装anaconda3-6.2.0/python3.7,目前不支持在环境安装tensorflow,附上所有版本链接地址:
镜像下载地址:清华镜像源
官方下载地址:https://repo.anaconda.com/archive/
三、使用linux系统安装:
1. bash ~/你的下载的包路径
一直yes....(最后一个VScode是No )
装完...
1、命令行可查看当前anaconda的版本:conda --version/conda -V
2、首先查看anaconda默认的python环境:命令行输入conda info --envs(如anaconda默认安装python 3.6)
3、添加python2.7和python 3.5两个环境
conda create -n python27 python=2.7,其中python27是环境名称,python=2.7表示版本
conda create -n python36 python=3.6
如果要删除则
conda remove --name python27 --all
4、查看环境是否创建成功
conda info --envs
5、切换到制定环境
如
source activate python27
查看一下当前python的环境 python --version
6、切回原来的python 环境
source deactivate python27
2.出现conda:
修改环境变量
vim ~/.bashrc
在最后添加:
export PATH=~/anaconda3/bin:$PATH
重启环境变量:
source ~/.bashrc
3. 再开一个终端安装 conda install anaconda-navigator界面
打开anaconda后在Environment里Not installed输入tensorflow ,进行安装...装完后发现,然tensorflow并无用,以上工作仍然有效
四、 安装可使用tensorflow/keras的anaconda(以anaconda3-5.2.0为例)
1在终端建立一个 conda 计算环境
-
Create a conda environment called tensorflow:
-
conda create -n tensorflow python=3.6
-
2. 激活环境,使用 conda 安装 TensorFlow
-
Activate the environment and use pip to install TensorFlow inside i
-
source activate tensorflow
-
conda install tensorflow
- conda install keras
- conda install ipython
- conda install spyder
3.
-
-
在终端输入anaconda-navigator打开它,点击root左边下拉菜单出现tensorflow,点击它。之后在spyder测试tensorflow可否使用,需要装什么库,比如matplotlib,直接在环境里边找到Not installed,查找matplotlib进行安装,接下来所有库安装完都有效
五、测试tensorflow代码
1.
-
import tensorflow as tf hello = tf.constant('Hello, TensorFlow!') sess = tf.Session() print(sess.run(hello)) a = tf.constant(10) b = tf.constant(32) print(sess.run(a + b))
- 输出:
- b'Hello, TensorFlow!'
42
2.测试代码
-
import tensorflow as tf import numpy import matplotlib.pyplot as plt rng = numpy.random learning_rate = 0.01 training_epochs = 1000 display_step = 50 #数据集x train_X = numpy.asarray([3.3,4.4,5.5,7.997,5.654,.71,6.93,4.168,9.779,6.182,7.59,2.167, 7.042,10.791,5.313,9.27,3.1]) #数据集y train_Y = numpy.asarray([1.7,2.76,3.366,2.596,2.53,1.221,1.694,1.573,3.465,1.65,2.09, 2.827,3.19,2.904,2.42,2.94,1.3]) n_samples = train_X.shape[0] X = tf.placeholder("float") Y = tf.placeholder("float") W = tf.Variable(rng.randn(), name="weight") b = tf.Variable(rng.randn(), name="bias") pred = tf.add(tf.multiply(X, W), b) cost = tf.reduce_sum(tf.pow(pred-Y, 2))/(2*n_samples) optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) init = tf.initialize_all_variables() with tf.Session() as sess: sess.run(init) # 训练数据 for epoch in range(training_epochs): for (x, y) in zip(train_X, train_Y): sess.run(optimizer, feed_dict={X: x, Y: y}) print ("优化完成!") training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y}) print ("Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), '\n') #可视化显示 plt.plot(train_X, train_Y, 'ro', label='Original data') plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line') plt.legend() plt.show()
-
输出:
-
至此...恭喜跨坑成功
安装pytorch;pytorch网址
执行:conda install pytorch-cpu torchvision-cpu -c pytorch