Anaconda安装(Linux版本)

本文可成功装载tensorflow/keras库环境的anaconda,并已测试使用

一、如何卸载

终端:rm -rf anaconda3
   1.到根目录下,打开终端并输入:
      sudo gedit ~/.bashrc

   2.在.bashrc文件末尾用#号注释掉之前添加的路径(或直接删除):
      #export PATH=/home/lq/anaconda3/bin:$PATH
      保存并关闭文件

   3.使其立即生效,在终端执行:
      source ~/.bashrc

   4.关闭终端,然后再重启一个新的终端,这一步很重要,不然在原终端上还是绑定有anaconda.

二、Tips

若使用tensorflow

建议安装anaconda3-5.2.0/python3.6,可在环境安装tensorflow(anaconda3-4.2.0/python3.5也可),附上链接:

https://repo.anaconda.com/archive/Anaconda3-5.2.0-Linux-x86_64.sh

https://repo.anaconda.com/archive/Anaconda3-4.2.0-Linux-x86_64.sh

https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-5.2.0-Linux-x86_64.sh

https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-4.2.0-Linux-x86_64.sh

不建议安装anaconda3-6.2.0/python3.7,目前不支持在环境安装tensorflow,附上所有版本链接地址:

镜像下载地址:清华镜像源

官方下载地址:https://repo.anaconda.com/archive/

三、使用linux系统安装:

1. bash ~/你的下载的包路径

一直yes....(最后一个VScode是No )

装完...

1、命令行可查看当前anaconda的版本:conda --version/conda -V
2、首先查看anaconda默认的python环境:命令行输入conda info --envs(如anaconda默认安装python 3.6)
3、添加python2.7和python 3.5两个环境
conda create -n python27 python=2.7,其中python27是环境名称,python=2.7表示版本

conda create -n python36 python=3.6


如果要删除则
conda remove --name python27 --all

4、查看环境是否创建成功
conda info --envs


5、切换到制定环境

source activate python27

查看一下当前python的环境 python --version

6、切回原来的python 环境
source deactivate python27

2.出现conda:

修改环境变量

vim ~/.bashrc

在最后添加:

export PATH=~/anaconda3/bin:$PATH

重启环境变量:

source ~/.bashrc

3. 再开一个终端安装 conda install anaconda-navigator界面

打开anaconda后在Environment里Not installed输入tensorflow ,进行安装...装完后发现,然tensorflow并无用,以上工作仍然有效

四、 安装可使用tensorflow/keras的anaconda(以anaconda3-5.2.0为例)

1在终端建立一个 conda 计算环境

  • Create a conda environment called tensorflow:

  • conda create -n tensorflow python=3.6
  • 2. 激活环境,使用 conda 安装 TensorFlow

  • Activate the environment and use pip to install TensorFlow inside i

    • source activate tensorflow

       

    • conda install tensorflow
    • conda install keras
    • conda install ipython
    • conda install spyder

    3.

  • 在终端输入anaconda-navigator打开它,点击root左边下拉菜单出现tensorflow,点击它。之后在spyder测试tensorflow可否使用,需要装什么库,比如matplotlib,直接在环境里边找到Not installed,查找matplotlib进行安装,接下来所有库安装完都有效 

五、测试tensorflow代码

1.

  • import tensorflow as tf
    hello = tf.constant('Hello, TensorFlow!')
    sess = tf.Session()
    print(sess.run(hello))
    a = tf.constant(10)
    b = tf.constant(32)
    print(sess.run(a + b))

     

  • 输出:
  • b'Hello, TensorFlow!'
    42

2.测试代码

  • import tensorflow as tf
    import numpy
    import matplotlib.pyplot as plt
    rng = numpy.random
    
    learning_rate = 0.01
    training_epochs = 1000
    display_step = 50
    #数据集x
    train_X = numpy.asarray([3.3,4.4,5.5,7.997,5.654,.71,6.93,4.168,9.779,6.182,7.59,2.167,
                             7.042,10.791,5.313,9.27,3.1])
    #数据集y
    train_Y = numpy.asarray([1.7,2.76,3.366,2.596,2.53,1.221,1.694,1.573,3.465,1.65,2.09,
                             2.827,3.19,2.904,2.42,2.94,1.3])
    n_samples = train_X.shape[0]
    X = tf.placeholder("float")
    Y = tf.placeholder("float")
    
    W = tf.Variable(rng.randn(), name="weight")
    b = tf.Variable(rng.randn(), name="bias")
    
    pred = tf.add(tf.multiply(X, W), b)
    
    cost = tf.reduce_sum(tf.pow(pred-Y, 2))/(2*n_samples)
    
    optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
    
    init = tf.initialize_all_variables()
    with tf.Session() as sess:
        sess.run(init)
    
        # 训练数据
        for epoch in range(training_epochs):
            for (x, y) in zip(train_X, train_Y):
                sess.run(optimizer, feed_dict={X: x, Y: y})
    
        print ("优化完成!")
        training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y})
        print ("Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), '\n')
    
        #可视化显示
        plt.plot(train_X, train_Y, 'ro', label='Original data')
        plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
        plt.legend()
        plt.show()

     

  • 输出:

至此...恭喜跨坑成功

安装pytorch;pytorch网址

执行:conda install pytorch-cpu torchvision-cpu -c pytorch

 

 

 

 

### 安装AnacondaLinux系统的指南 #### 准备工作 确保拥有超级用户的权限或是root访问权,这有助于顺利完成软件包的下载与安装过程。同时确认已更新系统上的现有程序包至最新版本。 #### 下载Anaconda脚本文件 前往官方网站获取适用于Linux操作系统的Anaconda发行版链接[^1]。通过命令行工具wget来执行下载动作: ```bash wget https://repo.anaconda.com/archive/Anaconda3-2023.07-1-Linux-x86_64.sh ``` 此命令会依据当前最新的版本号自动调整URL路径;对于特定需求可替换上述链接中的版本信息部分以匹配所需的具体版本。 #### 验证下载文件完整性 为了保障所获得的数据未被篡改或损坏,在继续之前应当校验SHA-256哈希值: ```bash sha256sum Anaconda3-2023.07-1-Linux-x86_64.sh ``` 对比输出结果同官方提供的哈希字符串是否一致,以此验证文件无误。 #### 执行安装向导 赋予该shell脚本相应的执行权限并启动它: ```bash chmod +x Anaconda3-2023.07-1-Linux-x86_64.sh ./Anaconda3-2023.07-1-Linux-x86_64.sh ``` 按照屏幕提示完成一系列设置选项的选择,包括但不限于同意许可协议、指定目标目录等。 #### 初始化配置 当询问到是否要初始化Anaconda时输入`yes`,这样可以使得每次登录终端都能自动加载环境变量。如果选择不这样做,则需手动编辑`.bashrc`或其他相应Shell配置文件加入如下语句以便后续正常使用: ```bash export PATH="/home/user_name/anaconda3/bin:$PATH" ``` 请注意将其中的`user_name`替换成实际用户名字串。 #### 测试安装成果 最后一步是检验Python解释器以及pip管理工具能否正常运作: ```python python --version pip list ``` 以上两条指令分别用于查看Python版本号和列出所有已经安装好的库列表,从而间接证明整个流程的成功与否。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值