题图:by thefolkpr0ject from Instagram
阅读文本大概需要 6 分钟。
"高并发"对后台开发同学来说,既熟悉又陌生。熟悉是因为面试和工作经常会提及它。陌生的原由是服务器因高并发导致出现各位问题的情况少之又少。同时,想收获这方面的经验也是"摸着石头过河", 需要大量学习理论知识,再去探索。
如果是客户端开发的同学,字典中是没有“高并发”这个名词。这验证一句老话,"隔行如隔山"。客户端开发,特别是手机应用开发,更多地是考虑如何优化应用的性能,降低 App 的卡顿率等。
本文是一篇科普文,分享自己近来学到的知识。
什么是高并发?
由于分布式系统的问世,高并发(High Concurrency)通常是指通过设计保证系统能够同时并行处理很多请求。通俗来讲,高并发是指在同一个时间点,有很多用户同时的访问同一 API 接口或者 Url 地址。它经常会发生在有大活跃用户量,用户高聚集的业务场景中。
其实,高并发也离我们的生活并不遥远,例如大学学校的选课系统。一到选课的时候,一大批学生同时选课,导致系统出现“不良反应”;再如淘宝的 618 和 双 11 的购物活动;遇到节假日,12306 上演的“抢票大战”。另外,DDos 攻击也能算高并发的场景。
高并发会来带的后果
服务端:
用户端:
提高系统并发能力的方式
在这个“云”的时代,提高分布式系统并发能力的方式,方法论上主要有两种:垂直扩展(Scale Up)与水平扩展(Scale Out)。
1) 垂直扩展
增强单机硬件性能,例如:增加 CPU 核数如 32 核,升级更好的网卡如万兆,升级更好的硬盘如 SSD,扩充硬盘容量如 2T,扩充系统内存如 128G;
提升单机架构性能,例如:使用 Cache 来减少 I/O 次数,使用异步来增加单服务吞吐量,使用无锁数据结构来减少响应时间;
2) 水平扩展
高并发的三个经典问题
单台服务器最大并发
单台服务器最大并发问题,一般是指一台服务器能够支持多少TCP并发连接.
一种理论说法是受到端口号范围限制。操作系统上端口号 1024 以下是系统保留的,从 1024-65535 是用户使用的。由于每个TCP连接都要占一个端口号,所以我们最多可以有 60000 多个并发连接。
但实际上单机并发连接数肯定要受硬件资源(内存、网卡)、网络资源(带宽)的限制。特别是网卡处理数据的能力,它是最大并发的瓶颈。
C10K并发连接问题
C10K并发连接问题是指单机 1 万个并发连接问题。如何突破单机性能局限,是高性能网络编程所必须要直面的问题。这些局限和问题最早被 Dan Kegel 进行了归纳和总结,并首次成系统地分析和提出解决方案,后来这种普遍的网络现象和技术局限都被大家称为 C10K 问题 。
C10K问题本质上是操作系统的问题。对于 Web1.0/2.0 时代的操作系统而言, 传统的同步阻塞 I/O 模型都是一样的,处理的方式都是 requests per second,并发 10K 和 100 的区别关键在于CPU。
创建的进程线程多了,数据拷贝频繁(缓存I/O、内核将数据拷贝到用户进程空间、阻塞), 进程/线程上下文切换消耗大, 导致操作系统崩溃,这就是C10K问题的本质!
C10M并发连接问题
回顾了过去的10年里,我们面临高性能网络编程领域著名的C10K问题,最终也成功提出解决方案。下一个10年,是时候考虑C10M并发问题了。
Django 与高并发的联系
想弄清楚这个问题,首先要了解下 Django 在服务器中所处的位置。
上图中讲到 Django 应用服务器可以分为三层:
Web 框架层
WSGI 层
Web 服务器层
特别是 Nginx, 它的出现是为了解决 C10K 问题。Nginx 依靠异步事件驱动架构来帮助其处理大量的并发会话,由于其对资源的轻量利用和伸缩自如的特性,它成为了广受欢迎的 web 服务器。
Django 框架注重的数据交互。所以考虑的问题是 Django 适不适合于高并发的场景。
推荐阅读:
不积跬步,无以至千里