DeepRank: A New Deep Architecture for Relevance Ranking in Information Retrieval

DeepRank 是一种新型的深度学习架构,旨在模拟人类进行相关性标注的过程,用于信息检索中的相关性排序。它通过检测相关位置、使用CNN或2D-GRU的度量网络判断局部相关性,以及利用RNN的聚合网络生成全局相关性得分。与现有深度学习方法相比,DeepRank在LETOR 4.0和ChineseClick数据集上表现出色,证明了其捕获关键IR特征的能力,如精确匹配、语义匹配和位置启发式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Abstract

本文提出一种在信息检索中进行相关性排序的深度学习方法

已有的深度学习方法,如 DSSM,CDSSM 等直接应用神经网络来生成排序得分,并没有显式地理解相关性。

人类进行相关性标注的过程大概分为三步:

  • 检测相关位置
  • 判断局部相关性
  • 聚合局部相关性,生成最终的相关性标签

本文提出一种新的深度学习架构 DeepRank 来模拟上述人工标注过程。

  • 设计一种检测策略来发现相关的上下文
  • 使用一个度量网络来判断局部相关性
    • 卷积神经网络 (CNN)
    • 二维门控循环单元 (2D-GRU)
  • 最终使用一个聚合网络来产生全局相关性得分
    • sequential integration
    • term gating mechanism

DeepRank 很好地捕获了重要的 IR 特征,包括:

  • exact/semantic matching signals
  • proximity heuristics
  • query/term importance
  • diverse relevance requirement

试验显示,DeepRank 效果超

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值