Abstract
本文提出一种在信息检索中进行相关性排序的深度学习方法。
已有的深度学习方法,如 DSSM,CDSSM 等直接应用神经网络来生成排序得分,并没有显式地理解相关性。
人类进行相关性标注的过程大概分为三步:
- 检测相关位置
- 判断局部相关性
- 聚合局部相关性,生成最终的相关性标签
本文提出一种新的深度学习架构 DeepRank 来模拟上述人工标注过程。
- 设计一种检测策略来发现相关的上下文
- 使用一个度量网络来判断局部相关性
- 卷积神经网络 (CNN)
- 二维门控循环单元 (2D-GRU)
- 最终使用一个聚合网络来产生全局相关性得分
- sequential integration
- term gating mechanism
DeepRank 很好地捕获了重要的 IR 特征,包括:
- exact/semantic matching signals
- proximity heuristics
- query/term importance
- diverse relevance requirement
试验显示,DeepRank 效果超