给定n个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值,当所给的整均为负数时定义子段和为0
如:序列{-20,11,-4,13,-5,-2}的最大子段和为20
#include
#define maxn 100
using namespace std;
int data[maxn];
int n;
int inp(int left,int right)//求序列data[left]~data[right]的最大子段和
{
int s1,s2,lefts,rights,mid;
int sum=0,midsum=0,leftsum=0,rightsum=0;
if(left==right) //如果序列长度为1,直接求解
{
sum=data[left];
}
else
{
mid=(left+right)/2;//划分
leftsum=inp(left,mid); //对左边递归求解
rightsum=inp(mid+1,right);//对右边递归求解
s1=0,lefts=0;
for(int i=mid;i>=left;i--) //中间
{
lefts+=data[i];
if(lefts>s1)
s1=lefts;
}
s2=0,rights=0;
for(int i=mid+1;i<=n;i++)
{
rights+=data[i];
if(rights>s2)
s2=rights;
}
midsum=s1+s2; //中间部分序列和
if(midsum
>n)
{
for(int i=1;i<=n;i++)
cin>>data[i];
cout<
<