【剑指Offer-Java】矩形覆盖

题目描述

我们可以用21的小矩形横着或者竖着去覆盖更大的矩形。请问用n个21的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

思路

实质是斐波那契问题,还是用动态规划吧
dp[i]=dp[i-1]+dp[i-2]
dp[i-1]指长为i时若最后一个小矩形竖着放的总数,dp[i-2]是横着放时的情况

实现

public int RectCover(int target) {
        //实质是斐波那契问题,还是用动态规划吧
        //特殊情况:大矩形长为0/1/2,对应方法种数就是0/1/2
        if(target<3) return target;
        
        //dp[i]表示大矩形长为i时,覆盖方法的种数
        int[] dp=new int[target+1];
        dp[0]=0;
        dp[1]=1;
        dp[2]=2;
        for(int i=3;i<=target;i++){
            dp[i]=dp[i-1]+dp[i-2];   //dp[i-1]指最后一个小矩形竖着放,dp[i-2]是横着放
        }
        return dp[target];
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值