题目描述
我们可以用21的小矩形横着或者竖着去覆盖更大的矩形。请问用n个21的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?
思路
实质是斐波那契问题,还是用动态规划吧
dp[i]=dp[i-1]+dp[i-2]
dp[i-1]指长为i时若最后一个小矩形竖着放的总数,dp[i-2]是横着放时的情况
实现
public int RectCover(int target) {
//实质是斐波那契问题,还是用动态规划吧
//特殊情况:大矩形长为0/1/2,对应方法种数就是0/1/2
if(target<3) return target;
//dp[i]表示大矩形长为i时,覆盖方法的种数
int[] dp=new int[target+1];
dp[0]=0;
dp[1]=1;
dp[2]=2;
for(int i=3;i<=target;i++){
dp[i]=dp[i-1]+dp[i-2]; //dp[i-1]指最后一个小矩形竖着放,dp[i-2]是横着放
}
return dp[target];
}