Java ⼆叉树操作

2 篇文章 0 订阅

Java 单向列表的几种操作方式(删除,查找环,环入口)

 

⼆叉树的模型形状

 

首先我们先创建节点类

public class Node { 
 private int data; 
 private Node leftNode; 
 private Node rightNode; 
 public Node(int data, Node leftNode, Node rightNode){ 
 this.data = data; 
 this.leftNode = leftNode; 
 this.rightNode = rightNode; 
 } 
 
 public int getData() { 
 return data; 
 } 
 public void setData(int data) { 
 this.data = data; 
 } 
 public Node getLeftNode() { 
 return leftNode; 
 } 
 public void setLeftNode(Node leftNode) { 
 this.leftNode = leftNode; 
 } 
 public Node getRightNode() { 
 return rightNode; 
 } 
 public void setRightNode(Node rightNode) { 
 this.rightNode = rightNode; 
 } 
}

 

第一种递归方式:

public class BinaryTree { 
 /** 
 * @author yaobo
 * ⼆叉树的先序中序后序排序
 */ 
 public Node init() {//注意必须逆序建⽴,先建⽴⼦节点,再逆序往上建⽴,因为⾮叶⼦结点会使⽤到下⾯的节点,⽽初始化是按顺序初始化的,不逆序建⽴会报错 
 Node J = new Node(8, null, null); 
 Node H = new Node(4, null, null); 
 Node G = new Node(2, null, null); 
 Node F = new Node(7, null, J); 
 Node E = new Node(5, H, null); 
 Node D = new Node(1, null, G); 
 Node C = new Node(9, F, null); 
 Node B = new Node(3, D, E); 
 Node A = new Node(6, B, C); 
 return A; //返回根节点 
 }
 
 public void printNode(Node node){ 
 System.out.print(node.getData()); 
 } 
 public void theFirstTraversal(Node root) { //先序遍历 
 printNode(root); 
 if (root.getLeftNode() != null) { //使⽤递归进⾏遍历左孩⼦ 
 theFirstTraversal(root.getLeftNode()); 
 } 
 if (root.getRightNode() != null) { //递归遍历右孩⼦ 
 theFirstTraversal(root.getRightNode()); 
 } 
 } 
 public void theInOrderTraversal(Node root) { //中序遍历 
 if (root.getLeftNode() != null) { 
 theInOrderTraversal(root.getLeftNode()); 
 } 
 printNode(root); 
 if (root.getRightNode() != null) { 
 theInOrderTraversal(root.getRightNode()); 
 } 
 }
 
 
 public void thePostOrderTraversal(Node root) { //后序遍历 
 if (root.getLeftNode() != null) { 
 thePostOrderTraversal(root.getLeftNode()); 
 } 
 if(root.getRightNode() != null) { 
 thePostOrderTraversal(root.getRightNode()); 
 } 
 printNode(root); 
 } 
 
 public static void main(String[] args) { 
 BinaryTree tree = new BinaryTree(); 
 Node root = tree.init(); 
 System.out.println("先序遍历"); 
 tree.theFirstTraversal(root); 
 System.out.println(""); 
 System.out.println("中序遍历"); 
 tree.theInOrderTraversal(root); 
 System.out.println(""); 
 System.out.println("后序遍历"); 
 tree.thePostOrderTraversal(root); 
 System.out.println(""); 
 } 
}

第二种 放到栈里面

public class BinaryTree1 { 
     public Node init() {//注意必须逆序建立,先建立子节点,再逆序往上建立,因为非叶子结点会使用到下面的节点,而初始化是按顺序初始化的,不逆序建立会报错  
            Node J = new Node(8, null, null);  
            Node H = new Node(4, null, null);  
            Node G = new Node(2, null, null);  
            Node F = new Node(7, null, J);  
            Node E = new Node(5, H, null);  
            Node D = new Node(1, null, G);  
            Node C = new Node(9, F, null);  
            Node B = new Node(3, D, E);  
            Node A = new Node(6, B, C);  
            return A;   //返回根节点  
        } 
    
    public void printNode(Node node){  
        System.out.print(node.getData());  
    }
    
    
    public void theFirstTraversal_Stack(Node root) {  //先序遍历  
        Stack<Node> stack = new Stack<Node>();  
        Node node = root;  
        while (node != null || stack.size() > 0) {  //将所有左孩子压栈  
            if (node != null) {   //压栈之前先访问  
                printNode(node);  
                stack.push(node);  
                node = node.getLeftNode();  
            } else {  
                node = stack.pop();  
                node = node.getRightNode();  
            }  
        }  
    }  
      
    public void theInOrderTraversal_Stack(Node root) {  //中序遍历  
        Stack<Node> stack = new Stack<Node>();  
        Node node = root;  
        while (node != null || stack.size() > 0) {  
            if (node != null) {  
                stack.push(node);   //直接压栈  
                node = node.getLeftNode();  
            } else {  
                node = stack.pop(); //出栈并访问  
                printNode(node);  
                node = node.getRightNode(); 
            }  
        }  
    }  
      
    public void thePostOrderTraversal_Stack(Node root) {   //后序遍历  
        Stack<Node> stack = new Stack<Node>();  
        Stack<Node> output = new Stack<Node>();//构造一个中间栈来存储逆后序遍历的结果  
        Node node = root;  
        while (node != null || stack.size() > 0) {  
            if (node != null) {  
                output.push(node);  
                stack.push(node);                 
                node = node.getRightNode();  
            } else {  
                node = stack.pop();               
                node = node.getLeftNode();
            }  
        }  
        System.out.println(output.size());
        while (output.size() > 0) {
            
            printNode(output.pop());  
        }  
    }
    
    public static void main(String[] args) {  
        BinaryTree1 tree = new BinaryTree1();  
        Node root = tree.init();  
        System.out.println("先序遍历");  
        tree.theFirstTraversal_Stack(root);  
        System.out.println("");  
        System.out.println("中序遍历");  
        tree.theInOrderTraversal_Stack(root);  
        System.out.println("");  
        System.out.println("后序遍历");  
        tree.thePostOrderTraversal_Stack(root);  
        System.out.println("");  
    }
}

 

 

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值