乘法逆元_

乘法逆元

定义:若 a ∗ x ≡ 1 ( m o d    b ) a*x \equiv 1 (\mod b) ax1(modb),则 x x x a a a m o d    b \mod b modb下的逆元

作用:求 b a m o d    p \frac{b}{a} \mod p abmodp,的 1 a \frac{1}{a} a1 m o d    p \mod p modp下的整数取值


求法:

扩展欧几里得:

前提: a ⊥ p a\perp p ap(因为扩展欧几里得要求方程 a x + b y = 1 ax+by=1 ax+by=1 a ⊥ b a \perp b ab
做法:若是要求 a ∗ x ≡ 1 ( m o d    b ) a*x \equiv 1(\mod b) ax1(modb),其实就是要求 a x + b y = 1 ax+by=1 ax+by=1 x x x的取值,扩展欧几里得求解即可
代码实现:
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define int long long
using namespace std;

void read(int &sum)
{
	sum=0;char last='w',ch=getchar();
	while (ch<'0' || ch>'9') last=ch,ch=getchar();
	while (ch>='0' && ch<='9') sum=sum*10+ch-'0',ch=getchar();
	if (last=='-') sum=-sum;
}
int gcd(int a,int b)
{
	if (a%b==0) return b;
	else return gcd(b,a%b);
}
void EX_gcd(int a,int b,int &x,int &y)
{
	if (b==0) x=1,y=0;
	else EX_gcd(b,a%b,y,x),y-=a/b*x;	
}
int a,b,c;
signed main()
{
//	freopen("M.in","r",stdin);
//	freopen("M.out","w",stdout);
	read(a),read(b),c=1;
	int t=gcd(a,b);
	a/=t,b/=t;
	int x,y;
	EX_gcd(a,b,x,y);
	x*=c/t,y*=c/t;
	printf("%lld",(x+b*100)%b);
//	fclose(stdin);fclose(stdout);
	return 0;
}


快速幂

前提: p p p是质数,且 a ⊥ p a \perp p ap(因为费马小定理 a p − 1 ≡ 1 ( m o d    p ) a^{p-1}\equiv1(\mod p) ap11(modp),中 p p p是质数,且 a ⊥ a \perp a
做法: ∵ a ∗ x ≡ 1 ( m o d    p ) \because a*x \equiv 1 (\mod p) ax1(modp)
由费马小定理得, ∴ a ∗ x ≡ a p − 1 ( m o d    p ) \therefore a*x \equiv a^{p-1} (\mod p) axap1(modp)
两边同时除 a a a得, ∴ x ≡ a p − 2 ( m o d    p ) \therefore x \equiv a^{p-2} (\mod p) xap2(modp)
最后快速幂加 ( m o d    ) (\mod ) (mod)结束
代码实现:
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define int long long
using namespace std;

void read(int &sum)
{
	sum=0;char last='w',ch=getchar();
	while (ch<'0' || ch>'9') last=ch,ch=getchar();
	while (ch>='0' && ch<='9') sum=sum*10+ch-'0',ch=getchar();
	if (last=='-') sum=-sum;
}
int a,p;
int sortm(int x,int k)
{
	if (k==0) return 1;
	if (k==1) return x%p;
	int t=sortm(x,k/2)%p;
	if (k%2==0) return t*t%p;
	else return t*t%p*x%p;
}
signed main()
{
//	freopen("M.in","r",stdin);
//	freopen("M.out","w",stdout);
	read(a),read(p);
	int ans=sortm(a,p-2);
	printf("%lld",ans);
//	fclose(stdin);fclose(stdout);
	return 0;
}

线性算法

作用:求 1 1 1~ n n n的所有数的逆元
做法:首先我们知道 1 1 1的逆元为 1 1 1,然后设要求的为 i i i,再设 p = i ∗ k + r p=i*k+r p=ik+r,把这个式子放在 ( m o d    p ) (\mod p) (modp)下,得 i ∗ k + r ≡ 0 ( m o d    p ) i*k+r \equiv 0(\mod p) ik+r0(modp),两边同时乘以 i − 1 , r − 1 i^{-1},r^{-1} i1,r1,得 k ∗ r − 1 + i − 1 ≡ 0 ( m o d    p ) k*r^{-1}+i^{-1} \equiv 0(\mod p) kr1+i10(modp),所以 i − 1 ≡ − k ∗ r − 1 ( m o d    p ) i^{-1}\equiv -k*r^{-1}(\mod p) i1kr1(modp),所以 i − 1 ≡ − ⌊ p i ⌋ ∗ ( p m o d    i ) − 1 ( m o d    p ) i^{-1} \equiv -\lfloor \frac{p}{i} \rfloor*(p \mod i)^{-1} (\mod p) i1ip(pmodi)1(modp),这样我们就可以通过前面的逆元求出当前逆元。
代码实现:
#include<bits/stdc++.h>
#define int long long
using namespace std;
int n,p;
int inv[6*1000000];
signed main()
{
	cin >> n >> p;
	inv[1]=1;
	for (int i=2;i<=n;i++)
		inv[i]=(p-p/i)*inv[p%i]%p;
	for (int i=1;i<=n;i++)
		printf("%lld\n",inv[i]);
}

阶乘逆元

作用:求 1 ! , 2 ! . . . n ! 1!,2!...n! 1!,2!...n!的逆元
做法: ( i n v [ i ] = 1 i ) (inv[i]=\frac{1}{i}) (inv[i]=i1)因为 i n v [ i + 1 ] = 1 ( i + 1 ) ! inv[i+1]=\frac{1}{(i+1)!} inv[i+1]=(i+1)!1,所以 i n v [ i + 1 ] ∗ ( i + 1 ) = 1 i ! inv[i+1]*(i+1)=\frac{1}{i!} inv[i+1](i+1)=i!1,所以 i n v [ i ] = i n v [ i + 1 ] ∗ ( i + 1 ) inv[i]=inv[i+1]*(i+1) inv[i]=inv[i+1](i+1),这样我们就可以 O ( n ) O(n) O(n)求解了
代码实现
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define int long long
using namespace std;

void read(int &sum)
{
	sum=0;char last='w',ch=getchar();
	while (ch<'0' || ch>'9') last=ch,ch=getchar();
	while (ch>='0' && ch<='9') sum=sum*10+ch-'0',ch=getchar();
	if (last=='-') sum=-sum;
}
void EX_gcd(int a,int b,int &x,int &y)
{
	if (b==0) x=1,y=0;
	else EX_gcd(b,a%b,y,x),y-=a/b*x;	
}
int n,p;
int inv[3*1000001];
signed main()
{
//	freopen("M.in","r",stdin);
//	freopen("M.out","w",stdout);
	read(n);read(p);inv[n]=1;
	for (int i=1;i<=n;i++) inv[n]*=i,inv[n]%=p;
	int x,y;
	EX_gcd(inv[n],p,x,y);
	inv[n]=x;
	for (int i=n-1;i>=1;i--)
		inv[i]=inv[i+1]*(i+1)%p;
	for (int i=1;i<=n;i++)
		printf("%lld ",(inv[i]+p*100)%p);
//	fclose(stdin);fclose(stdout);
	return 0;
}

Tags:乘法逆元 数论 信息学

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值