乘法逆元的几种计算方法

乘法逆元是数论中重要的内容,也是 ACM 中常用到的数论算法之一。所以,如何高效的求出乘法逆元是一个值得研究的问题。

这里我们只讨论当模数为素数的情况,因为如果模数不为素数,则不一定每个数都有逆元。

定义

在  mod p的意义下我们把 xx 的乘法逆元写作 x ^ {-1}x1
乘法逆元有如下的性质:


乘法逆元的一大应用是模意义下的除法,除法在模意义下并不是封闭的,但我们可以根据上述公式,将其转化为乘法。


费马小定理

要求 pp 为素数。

上述公式可变形为

由乘法逆元的定义,a ^ {p - 2}ap2 即为 aa 的乘法逆元。

使用快速幂计算 a ^ {p - 2}ap2,总时间复杂度为 O(\log a)O(loga)

代码
inline int pow(const int n, const int k) {
    long long ans = 1;
    for (long long num = n, t = k; t; num = num * num % MOD, t >>= 1) if (t & 1) ans = ans * num % MOD;
    return ans;
}
inline int inv(const int num) {
    return pow(num, MOD - 2);
}

扩展欧几里得

扩展欧几里得(EXGCD)算法可以在 O(\log \max(a, b))O(logmax(a,b)) 的时间内求出关于 xxyy 的方程


的一组整数解

当 bb 为素数时,\gcd(a, b) = 1gcd(a,b)=1,此时有

时间复杂度为 O(\log a)O(loga)

代码
void exgcd(const int a, const int b, int &g, int &x, int &y) {
    if (!b) g = a, x = 1, y = 0;
    else exgcd(b, a % b, g, y, x), y -= x * (a / b);
}
inline int inv(const int num) {
    int g, x, y;
    exgcd(num, MOD, g, x, y);
    return ((x % MOD) + MOD) % MOD;
}


递推法


代码
inv[1] = 1;
for (int i = 2; i <= MAXN; i++) inv[i] = ((-(MOD / i) * inv[MOD % i]) % MOD + MOD) % MOD;

下面是ACdreamers关于递推求解逆元的推导过程(个人觉得他的更好)

其实有些题需要用到的所有逆元,这里为奇质数。那么如果用快速幂求时间复杂度为

如果对于一个1000000级别的素数,这样做的时间复杂度是很高了。实际上有的算法,有一个递推式如下

 

                   

 

它的推导过程如下,设,那么

 

       

 

对上式两边同时除,进一步得到

 

       

 

再把替换掉,最终得到

 

       

 

初始化,这样就可以通过递推法求出模奇素数的所有逆元了。

 

另外的所有逆元值对应中所有的数,比如,那么对应的逆元是



  • 8
    点赞
  • 35
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
26在模意义下的乘法逆元是指另一个整数x,使得26与模数取模后相乘等于1,即 $26x \equiv 1 \pmod{m}$,其中m为模数。 有多种方法可以计算乘法逆元,下面介绍两种常见的方法。 ### 扩展欧几里得算法 扩展欧几里得算法可以求解形如 $ax + by = \gcd(a,b)$ 的线性方程,其中a和b为任意整数。当a和模数m互质时,即 $\gcd(a,m) = 1$ 时,可以通过扩展欧几里得算法求出a在模m意义下的乘法逆元。 具体做法是,首先用欧几里得算法求出$\gcd(a,m)$,同时记录下每一步中的商和余数,然后从最后一步开始逆推,得到 $ax + my = \gcd(a,m)$ 的一组解,其中x即为a在模m意义下的乘法逆元。 以下是Python代码实现: ```python def ext_euclid(a, b): if b == 0: return a, 1, 0 else: d, x, y = ext_euclid(b, a % b) return d, y, x - (a // b) * y def mod_inv(a, m): d, x, y = ext_euclid(a, m) return x % m if d == 1 else None # 计算26在模37意义下的乘法逆元 inv = mod_inv(26, 37) print(inv) # 输出16 ``` ### 快速幂算法 当模数m为素数时,可以用费马小定理来计算乘法逆元。具体来说,如果a和m互质,那么 $a^{m-1} \equiv 1 \pmod{m}$,因此 $a \cdot a^{m-2} \equiv 1 \pmod{m}$,即$a^{m-2}$是a在模m意义下的乘法逆元。 对于一般的模数,可以先将模数分解为若干个不同的素数的乘积,然后对每个素数分别用费马小定理计算乘法逆元,最后利用中国剩余定理合并结果。但是这种方法比较繁琐,不如直接使用扩展欧几里得算法。 以下是Python代码实现: ```python def mod_pow(a, b, m): # 快速幂算法,计算a^b mod m res = 1 while b > 0: if b % 2 == 1: res = (res * a) % m a = (a * a) % m b //= 2 return res def mod_inv(a, m): # 计算a在模m意义下的乘法逆元 return mod_pow(a, m - 2, m) # 计算26在模37意义下的乘法逆元 inv = mod_inv(26, 37) print(inv) # 输出16 ``` 以上两种方法都可以求解26在模37意义下的乘法逆元,结果均为16。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值