最长公共子序列(DP)

15 篇文章 2 订阅

算法设计例题:最长公共子序列(DP)

memory limit: 65536KB    time limit: 500MS

accept: 50    submit: 124

Description

一个给定序列的子序列是在该序列中删去若干元素后得到的序列。确切地说,若给定序列 X = { x1x2xm },则另一序列Z={ z1z2zk }X的子序列是指存在一个严格递增下标序列i1i2ik },使得对于所有 j = 12k ,有 zj = xij

给出两个字符序列X和Y,求出它们的最长公共子序列。

Input

输入的第一行为测试样例的个数T( T < 40 ),接下来有T个测试样例。每个测试样例的第一行是字符串X,第二行是字符串YXY只包含大写字母,且长度不大于1000

Output

对应每个测试样例输出一行,只有一个整数,表示字符串X和字符串Y的最长公共子序列的长度。

Sample Input

2
ABCDE
ACE
AAABBBCCC
AABBCC

Sample Output

3
6

Author

Eapink & CYL


解决方法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
#include<iostream>
#include<string.h>
#define N 1000
int dp[N][N];
 
int max( int a, int b)
{
     return a>b?a:b;
}
 
int main()
{
     int i,j,k,len1,len2,textNum;
     char s1[N],s2[N];
     scanf ( "%d" ,&textNum);
     for (k=0;k<textNum;k++)
     {
         scanf ( "%s%s" ,s1,s2);
         len1= strlen (s1);
         len2= strlen (s2);
         for (i=1;i<len1;i++)
             dp[i][0]=0;
         for (j=1;j<len2;j++)
             dp[0][j]=0;
         for (i=1;i<=len1;i++)
             for (j=1;j<=len2;j++)
                 if (s1[i-1]==s2[j-1])
                     dp[i][j]=dp[i-1][j-1]+1;
                 else
                     dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
         printf ( "%d\n" ,dp[len1][len2]);
                         
 
     }
   
     return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值