39、TSP的几种精确求解方法(DFJ、MTZ、最短边破圈式、行生成式)和启发式方法(插入法、近邻法、2-opt、3-opt、模拟退火)

本文深入探讨了旅行商问题(TSP),包括定义、整数模型(DFJ与MTZ)、行生成模型、近似算法及测试结果。详细解析了各种算法的原理、实现方式与适用范围,对比了不同算法的求解效率与精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0、定义

TSP(Traveling Salesman Problem),旅行商问题,又名旅行推销员问题、货郎担问题

假设一个旅行商要拜访n个城市,每个城市只能经过一次,且最后要回到起点,问如何走路程最短

1、整数模型

设cij为第i个点到第j个点的距离,xij表示是否从走到

1.1、DFJ整数模型

该模型较好理解,前面两个约束保证对每个点入度为1,出度也为1,第三个约束保证每个非空集合到其补集一定有边相连

def TSP_IP_DFJ(Dis, n, time_limit):

    model = Model("TSP_IP_DFJ")

    A = [[model.addVar(vtype="B", name="A[%s,%s]" % (i, j)) for j in range(n)] for i in range(n)]

    # 以总成本最小为目标
    model.setObjective(quicksum(Dis[i][j] * A[i][j] for i in range(n) for j in range(n)))

    #一度约束
    for i in range(n):
        model.addCons(quicksum(A[i][j] for j in range(n) if i != j) == 1)
        model.addCons(quicksum(A[j][i] for j in range(n) if i != j) == 1)

    #无子环约束
    SS = subset([i for i in range(n)])
    for S in SS:
        model.addCons(quicksum(A[i][j] for i in S for j in range(n) if j not in S) >= 1)

    # 设置求解时间
    model.setRealParam("limits/time", time_limit)
    model.optimize()
    print("\ngap:", model.getGap())

    A1 = [[round(model.getVal(A[i][j])) for j in range(n)] for i in range(n)]
    return A1

1.2、MTZ整数模型

两个模型区别在于无子环约束形式的不同,下面证明两者等价

证明

MTZ模型的好处在于其约束相较于DFJ明显变少(2^n到n^2)

def TSP_IP_MTZ(Dis, n, time_limit):

    model = Model("TSP_IP_MTZ")

    A = [[model.addVar(vtype="B", name="A[%s,%s]" % (i, j)) for j in range(n)] for i in range(n)]
    U = [model.addVar(name="U[%s]"%i) for i in range(n)]

    # 以总成本最小为目标
    model.setObjective(quicksum(Dis[i][j] * A[i][j] for i in range(n) for j in range(n)))

    # 一度约束
    for i in range(n):
        model.addCons(quicksum(A[i][j] for j in range(n) if i != j) == 1)
        model.addCons(quicksum(A[j][i] for j in range(n) if i != j) == 1)

    #MTZ无子环约束
    for i in range(1, n):
        for j in range(1, n):
            if i != j:
                model.addCons(U[i]-U[j]+(n-1)*A[i][j] <= n-2)

    # 设置求解时间
    model.setRealParam("limits/time", time_limit)
    model.optimize()
    print("\ngap:", model.getGap())

    A1 = [[round(model.getVal(A[i][j])) for j in range(n)] for i in range(n)]
    return A1

1.3、行生成模型

这里先解上面其松弛模型,再判定解是否满足条件,再不断添加不满足的约束,添加约束的方案一般为约束已生成的子环不会发生,下面列举一些方法

让其与补集有边相连,或让其内部连边不够,代码块里通过type区分(精确解)

1.3.1、多次调用模式

  • def sub_TSP_row_generate(Dis, n, L_S, time_limit, type=2):
    
        model = Model("sub_TSP_row_generate")
    
        A = [[model.addVar(vtype="B", name="A[%s,%s]" % (i, j)) for j in range(n)] for i in range(n)]
    
        # 以总成本最小为目标
        model.setObjective(quicksum(Dis[i][j] * A[i][j] for i in range(n) for j in range(n)))
    
        # 一度约束
        for i in range(n):
            model.addCons(quicksum(A[i][j] for j in range(n) if i != j) == 1)
            model.addCons(quicksum(A[j][i] for j in range(n) if i != j) == 1)
    
        #两个方向限制不生成已有的子环
        if type == 1:
            #该集合与补集有边相连
            for S in L_S:
                model.addCons(quicksum(A[i][j] for i in S for j in range(n) if j not in S) >= 1)
                model.addCons(quicksum(A[j][i] for i in S for j in range(n) if j not in S) >= 1)
        else:
            #该集合内部边不够
            for S in L_S:
                model.addCons(quicksum(A[i][j] for i in S for j in S if i != j) <= len(S)-1)
    
        # 设置求解时间
        model.setRealParam("limits/time", time_limit)
        model.optimize()
        print("\ngap:", model.getGap())
    
        A1 = [[round(model.getVal(A[i][j])) for j in range(n)] for i in range(n)]
        return A1
    
    def TSP_IP_row_generate(Dis, n, time_limit):
    
        L_S = []
        ring_sub = True
        while ring_sub:
            ring_sub = False
            A = sub_TSP_row_generate(Dis, n, L_S, time_limit)
            D = {i:j for i in range(n) for j in range(n) if A[i][j] == 1}
            S = {0}
            a = 0
            while len(S) < n:
                b = D[a]
                if b in S:
                    L_S.append(S)
                    ring_sub = True
                    break
                else:
                    S.add(b)
                    a = b
            if not ring_sub:
                return A

1.3.2、freeTransform模式

  • def LL_A_generate(A):
        LL_A = [[i] for i in range(len(A))]
        D = {i: i for i in range(len(A))}
    
        for i in range(len(A)):
            for j in range(len(A[i])):
                if A[i][j] == 1 and D[i] != D[j]:
                    index_min = min(D[i], D[j])
                    index_max = max(D[i], D[j])
                    LL_A[index_min] = LL_A[index_min] + LL_A[index_max]
                    del LL_A[index_max]
                    for k in D:
                        if D[k] > index_max:
                            D[k] -= 1
                    for k in LL_A[index_min]:
                        D[k] = index_min
        return LL_A
    
    def TSP_IP_exact(points, Dis, time_limit=1000, type=2):
        n = len(Dis)
    
        model = Model("TSP_IP_exact")
        model.hideOutput()
        A = [[model.addVar(ub=1, name="A[%s,%s]" % (i, j)) for j in range(n)] for i in range(n)]
    
        # 以总成本最小为目标
        model.setObjective(quicksum(Dis[i][j] * A[i][j] for i in range(n) for j in range(n) if i != j), "minimize")
    
        for i in range(n):
            for j in range(n):
                if i == j:
                    model.addCons(A[i][j] == 0)
                else:
                    model.addCons(A[i][j] <= 1)
                    model.addCons(A[i][j] >= 0)
    
        for i in range(n):
            model.addCons(quicksum(A[i][j] for j in range(n) if i != j) == 1)
            model.addCons(quicksum(A[j][i] for j in range(n) if i != j) == 1)
    
        # 设置求解时间
        model.setRealParam("limits/time", time_limit)
    
        EPS = 1.e-6
        loop = 0
        isMIP = False
        while True:
            loop += 1
            print("精确求解第", loop, "次迭代")
            model.optimize()
            if not isMIP:
                A1 = [[1 if model.getVal(A[i][j]) > EPS else 0 for j in range(n)] for i in range(n)]
            else:
                A1 = [[round(model.getVal(A[i][j])) for j in range(n)] for i in range(n)]
            LL_A = LL_A_generate(A1)
            if loop % 10 == 0:
                A2 = [[A1[i][j] if i < j else 0 for j in range(n)] for i in range(n)]
                A_plot(points, A2, x_min, y_min, x_max, y_max)
            if len(LL_A) == 1:
                if not isMIP:
                    print("转为MIP")
                    model.freeTransform()
                    for i in range(len(A)):
                        for j in range(len(A[i])):
                            model.chgVarType(A[i][j], "B")
                    isMIP = True
                    continue
                else:
                    break
            model.freeTransform()
            # 已测试过的不能在一起的点,避免再次得到
            if type == 1:
                for S in LL_A:
                    model.addCons(quicksum(A[i][j] for i in S for j in range(n) if j not in S) >= 1)
            else:
                for S in LL_A:
                    model.addCons(quicksum(A[i][j] for i in S for j in S if i != j) <= len(S) - 1)
        return A1

1.3.3、freeTransform和networkx模式

  • def solve_tsp(V, c, type=1):
        def addcut(cut_edges):
            G = networkx.Graph()
            G.add_edges_from(cut_edges)
            Components = list(networkx.connected_components(G))
            if len(Components) == 1:
                return False
            model.freeTransform()
    
            if type == 1:
                # 该集合与补集有边相连
                for S in Components:
                    model.addCons(quicksum(x[i, j] for i in S for j in V if j not in S) >= 1)
                    print("cut: %s 与其补集相连" % (S))
            else:
                # 该集合内部边不够
                for S in Components:
                    model.addCons(quicksum(x[i, j] for i in S for j in S if j != i) <= len(S) - 1)
                    print("cut: len(%s) <= %s" % (S, len(S) - 1))
            return True
    
        def addcut2(cut_edges):
            G = networkx.Graph()
            G.add_edges_from(cut_edges)
            Components = list(networkx.connected_components(G))
    
            if len(Components) == 1:
                return False
            model.freeTransform()
            for S in Components:
                T = set(V) - set(S)
                print("S:", S)
                print("T:", T)
                model.addCons(quicksum(x[i, j] for i in S for j in T if j > i) +
                              quicksum(x[i, j] for i in T for j in S if j > i) >= 2)
                print("cut: %s >= 2" % "+".join([("x[%s,%s]" % (i, j)) for i in S for j in T if j > i]))
            return True
    
        model = Model("tsp")
    
        x = {}
        for i in V:
            for j in V:
                x[i, j] = model.addVar(ub=1, name="x(%s,%s)" % (i, j))
    
        for i in V:
            model.addCons(quicksum(x[i, j] for j in V if j != i) == 1, "OutDegree(%s)" % i)
            model.addCons(quicksum(x[j, i] for j in V if j != i) == 1, "InDegree(%s)" % i)
    
        model.setObjective(quicksum(c[i, j] * x[i, j] for i in V for j in V if j != i), "minimize")
    
        EPS = 1.e-6
        isMIP = False
        while True:
            model.optimize()
            edges = []
            for (i, j) in x:
                if model.getVal(x[i, j]) > EPS:
                    edges.append((i, j))
    
            if addcut(edges) == False:
                if isMIP:  # integer variables, components connected: solution found
                    break
                model.freeTransform()
                for (i, j) in x:  # all components connected, switch to integer model
                    model.chgVarType(x[i, j], "B")
                    isMIP = True
    
        return model.getObjVal(), edges
    
    def TSP_IP_exact_official(points, Dis):
        nums = len(points)
        V = range(1, nums + 1)
        c = {(i, j): Dis[i - 1][j - 1] for i in range(1, nums + 1) for j in range(1, nums + 1)}
        obj, edges = solve_tsp(V, c)
        A = [[0 for j in range(nums)] for i in range(nums)]
        for edge in edges:
            A[edge[0] - 1][edge[1] - 1] = 1
        return A

1.3.4、最短的边破除该子环(启发式,效果一般)

  • def sub_TSP_row_generate_heuristic(Dis, n, pairs_must, time_limit):
    
        model = Model("sub_TSP_row_generate_heuristic")
    
        A = [[model.addVar(vtype="B", name="A[%s,%s]" % (i, j)) for j in range(n)] for i in range(n)]
    
        # 以总成本最小为目标
        model.setObjective(quicksum(Dis[i][j] * A[i][j] for i in range(n) for j in range(n)))
    
        # 一度约束
        for i in range(n):
            model.addCons(quicksum(A[i][j] for j in range(n) if i != j) == 1)
            model.addCons(quicksum(A[j][i] for j in range(n) if i != j) == 1)
    
        #把要连的边连上
        for pair in pairs_must:
            i, j = pair[0], pair[1]
            model.addCons(A[i][j]+A[j][i] == 1)
    
        # 设置求解时间
        model.setRealParam("limits/time", time_limit)
        model.optimize()
        print("\ngap:", model.getGap())
    
        A1 = [[round(model.getVal(A[i][j])) for j in range(n)] for i in range(n)]
        return A1
    
    def TSP_IP_row_generate_heuristic(points, Dis, n, time_limit):
    
        pairs = pair_points_generate(Dis)
        pairs_must = set()
        ring_sub = True
        used = {i:0 for i in range(n)}
        while ring_sub:
            ring_sub = False
            A = sub_TSP_row_generate_heuristic(Dis, n, pairs_must, time_limit)
            D = {i:j for i in range(n) for j in range(n) if A[i][j] == 1}
            S = {0}
            a = 0
            while len(S) < n:
                b = D[a]
                #若生成子环,则将最短破圈边加入
                if b in S:
                    ring_sub = True
                    for pair in pairs:
                        i, j = pair[0], pair[1]
                        if ((i in S and j not in S) or (i not in S and j in S)) and used[i] <= 1 and used[j] <= 1:
                            pairs_must.add((i, j))
                            used[i] += 1
                            used[j] += 1
                            break
                    break
                else:
                    S.add(b)
                    a = b
        A = deal_overlap(points, A)
        A = Undirected_to_directed(A)
        return A

2、近似算法

2.1、插入法

该方法很直观,从一个点开始,不断的把最近的邻居加进来

#近邻插入
def TSP_nearest(points, Dis):
    n = len(Dis)

    S = [0 for i in range(len(Dis))]
    T = [1 for i in range(len(Dis))]

    # 加入第一个点
    route = [0]
    S[0] = 1
    T[0] = 0

    # 开始加点
    while sum(T) > 0:
        u = route[-1]
        nexts = [i for i in range(n) if S[i] == 0]
        v = nexts[0]
        for j in range(1, len(nexts)):
            if Dis[u][v] > Dis[u][nexts[j]]:
                v = nexts[j]
        route.append(v)
        S[v] = 1
        T[v] = 0

    A = [[0 for j in range(n)] for i in range(n)]
    for i in range(len(route) - 1):
        A[route[i]][route[i + 1]] = 1
        A[route[i + 1]][route[i]] = 1
    A[route[0]][route[-1]] = 1
    A[route[-1]][route[0]] = 1

    A = deal_overlap(points, A)

    return A

2.2、凸包插入法

先把所有点的凸包算出来,然后把剩余点以损失最小的方式插入路径中

#先着凸包,再插入
def TSP_insert(points, Dis):
    # 每个坐标对应的索引
    D = {}
    for p in points:
        D[p[0]] = p[1:]

    ps = list(D.values())
    b = boundary_find(ps)

    route = []
    for p in b:
        idex = list(D.keys())[list(D.values()).index(p)]
        if idex not in route:
            route.append(idex)

    S = [i for i in range(len(points)) if i not in route]

    while len(S) > 0:
        costs = [[Dis[route[-1]][S[i]] + Dis[S[i]][route[0]] - Dis[route[-1]][route[0]]] + [
            Dis[route[j]][S[i]] + Dis[S[i]][route[j + 1]] - Dis[route[j]][route[j + 1]] for j in range(len(route) - 1)]
                 for i in range(len(S))]
        new, idex = 0, 0
        for i in range(len(S)):
            for j in range(len(route)):
                if costs[i][j] < costs[new][idex]:
                    new, idex = i, j
        route.insert(idex, S[new])
        del S[new]

    n = len(points)
    A = [[0 for j in range(n)] for i in range(n)]
    for i in range(len(route) - 1):
        A[route[i]][route[i + 1]] = 1
        A[route[i + 1]][route[i]] = 1
    A[route[0]][route[-1]] = 1
    A[route[-1]][route[0]] = 1

    A = deal_overlap(points, A)

    return A

2.3、2-opt

随机初始化,不断的交换两个点的位置,更短则更新

#2-opt
def TSP_2_opt(points, Dis):
    route = [i for i in range(len(points))]
    n = len(points)

    flag = 1

    while flag == 1:
        flag = 0
        for i in range(n - 1):
            for j in range(i + 1, n):
                route1 = copy.deepcopy(route)
                route1[i], route1[j] = route1[j], route1[i]
                if sub_k_opt(route, Dis) > sub_k_opt(route1, Dis):
                    route = route1
                    flag = 1
                    break
            if flag == 1:
                break

    A = [[0 for j in range(n)] for i in range(n)]
    for i in range(len(route) - 1):
        A[route[i]][route[i + 1]] = 1
        A[route[i + 1]][route[i]] = 1
    A[route[0]][route[-1]] = 1
    A[route[-1]][route[0]] = 1

    A = deal_overlap(points, A)

    return A

2.4、3-opt

在2-opt的基础上,多加入一个换的点

def TSP_3_opt(points, Dis):
    route = [i for i in range(len(points))]
    n = len(points)

    flag = 1

    while flag == 1:
        flag = 0
        for i in range(n - 2):
            for j in range(i + 1, n - 1):
                for k in range(j + 1, n):
                    route1, route2, route3, route4, route5 = copy.deepcopy(route), copy.deepcopy(route), copy.deepcopy(
                        route), copy.deepcopy(route), copy.deepcopy(route)
                    route1[i], route1[j], route1[k] = route1[i], route1[k], route1[j]
                    route2[i], route2[j], route2[k] = route2[j], route2[i], route2[k]
                    route3[i], route3[j], route3[k] = route3[j], route3[k], route3[i]
                    route4[i], route4[j], route4[k] = route4[k], route4[i], route4[j]
                    route5[i], route5[j], route5[k] = route5[k], route5[j], route5[i]
                    if sub_k_opt(route, Dis) > sub_k_opt(route1, Dis):
                        route = route1
                        flag = 1
                    if sub_k_opt(route, Dis) > sub_k_opt(route2, Dis):
                        route = route2
                        flag = 1
                    if sub_k_opt(route, Dis) > sub_k_opt(route3, Dis):
                        route = route3
                        flag = 1
                    if sub_k_opt(route, Dis) > sub_k_opt(route4, Dis):
                        route = route4
                        flag = 1
                    if sub_k_opt(route, Dis) > sub_k_opt(route5, Dis):
                        route = route5
                        flag = 1
                    if flag == 1:
                        break
                if flag == 1:
                    break
            if flag == 1:
                break

    A = [[0 for j in range(n)] for i in range(n)]
    for i in range(len(route) - 1):
        A[route[i]][route[i + 1]] = 1
        A[route[i + 1]][route[i]] = 1
    A[route[0]][route[-1]] = 1
    A[route[-1]][route[0]] = 1

    A = deal_overlap(points, A)

    return A

2.5、SA

引入模拟退火思想,一定程度接受质量不高的解

def TSP_SA(points, Dis):
    route = [i for i in range(len(points))]
    n = len(points)

    T = 1000 * sub_k_opt(route, Dis)
    T0 = 1
    alpha = 0.99
    flag = 0
    limit = n * math.log(n)
    loop = 0

    while flag < limit or T <= T0:
        loop += 1
        if loop % 10 == 0:
            print("模拟退火进行至:", loop)
        i = int(rd.random() * (n - 1))
        j = int(rd.random() * (n - i - 1)) + i + 1
        route1 = copy.deepcopy(route)
        route1[i], route1[j] = route1[j], route1[i]
        if sub_k_opt(route, Dis) > sub_k_opt(route1, Dis):
            route = route1
            T = T * alpha
            flag = 0
        else:
            dc = sub_k_opt(route1, Dis) - sub_k_opt(route, Dis)
            if math.exp(-dc / T) > rd.random():
                route = route1
                T = T * alpha
                flag = 0
            else:
                flag += 1

    A = [[0 for j in range(n)] for i in range(n)]
    for i in range(len(route) - 1):
        A[route[i]][route[i + 1]] = 1
        A[route[i + 1]][route[i]] = 1
    A[route[0]][route[-1]] = 1
    A[route[-1]][route[0]] = 1

    A = deal_overlap(points, A)

    return A

3、测试结果

3.1、各方法适用范围

方法

类型

适用规模

DFJ

精确解

0-15

MTZ

精确解

0-80

row_generate

精确解

0-20

row_generate_heuristic

近似解

0-100

exact

精确解

0-150

exact_official

精确解

0-150

nearest

近似解

0-

insert

近似解

0-

2-opt

近似解

0-

3-opt

近似解

0-

SA

近似解

0-

3.2、测试结果

这里采用公共数据集中有最优解的case测试,总体来说凸包插入法在求解效率(秒级别出结果)和求解精度(gap4.43%)上表现较好

测试集

最优解

近邻插入

gap

时间

凸包插入

gap

时间

avg8.44%3.344.43%3.29
gr9654490.0658973.968.23%0.3557667.755.83%0.26
rd1007910.409100.2615.04%0.278430.036.57%0.30
pcb44250783.5558982.0416.14%9.5456156.0110.58%10.91
lin10514383.0018027.8925.34%0.3714632.231.73%0.33
tsp2253859.004275.9310.80%2.024377.0713.42%1.94
gr666321086.46338140.025.31%53.76345173.007.50%50.96
ch1306110.866791.3111.14%0.566656.108.92%0.55
bays292020.002030.000.50%0.022044.001.19%0.03
berlin527544.378244.839.28%0.088069.846.97%0.09
eil51429.98455.946.04%0.06452.175.16%0.09
ulysses168182.208176.38-0.07%0.018179.44-0.03%0.01
kroD10021294.2923441.2310.08%0.4021676.431.79%0.25
gr20260350.2156023.71-7.17%1.3355704.01-7.70%1.51
ch1506532.287531.6315.30%0.766952.566.43%0.73
a2802586.772920.0512.88%2.892812.688.73%3.39
pr76108159.44115930.237.18%0.13113672.765.10%0.17
ulysses228354.998496.751.70%0.028306.20-0.58%0.02
kroC10020750.7623680.5114.12%0.2720871.380.58%0.28
eil76545.39578.426.06%0.13572.825.03%0.13
eil101642.31672.744.74%0.34671.684.57%0.28
att4810628.0011148.004.89%0.0610859.002.17%0.06
st70678.60734.538.24%0.13702.503.52%0.16
bayg291610.001708.006.09%0.031610.000.00%0.03

对比图

 

<think>好,我现在需要回答用户关于TSP问题的几个编程实现思考题。首先,用户的问题分为三个主要部分:用贪婪算法邻近插入算法2-Opt算法改进结果,还有两个思考题涉及消除子回路约束使用神经网络或动态规划求解。 首先,关于第一个编程任务,用贪婪算法求解29城市的TSP。我需要回忆贪婪算法的步骤。贪婪算法通常是每次选择近的未访问城市,直到所有城市都被访问,然后回到起点。但需要注意,这样可能会得到局部优,而不是全局优。实现的话,可能需要读取城市坐标,计算距离矩阵,然后逐步构建路径。Python中可以用列表来存储已访问未访问的城市,每一步找当前城市近的邻居。 然后是第二个任务,邻近插入算法。这个算法贪婪有所不同,它从一个初始环路(比如三个城市)开始,然后每次插入一个城市到环路中成本小的位置。具体来说,对于每个未加入的城市,找到环路上哪两个相邻城市之间插入这个城市后,总距离增加少,然后选择优的插入位置。这需要动态维护环路的结构,可能用列表或者链表来实现插入操作。 第三个任务是用2-Opt算法对前两个算法的结果进改进。2-Opt是一种局部搜索算法,通过不断交换的顺序来减少总路径长度。具体来说,遍历所有可能的对,如果交换这两条后路径更,则执交换。重复这个过程直到无法进一步优化。实现时需要注意避免重复计算,可能需要两层循环遍历所有可能的ij,并检查交换后的路径是否更优。 接下来是思考题部分。第一个思考题是关于TSP模型中消除子回路的约束。这通常在整数线性规划模型中出现,比如使用Miller-Tucker-Zemlin约束或者子回路消除约束。需要解释这些约束如何防止多个不连通的环路形成,确保整个路径是一个单一环路。 第二个思考题要求用神经网络或动态规划。动态规划对于29个城市可能可,因为时间复杂度是O(n^2 2^n),但n=29时2^29大约是5亿,乘以n&sup2;可能会很大,内存计算时间可能很高。不过可以尝试用状态压缩记忆化优化。神经网络的话,可能是指使用类似Hopfield网络或者近流的图神经网络,但具体实现可能比较复杂,需要进一步查阅方法。 编程实现方面,用户提到城市坐标存储在文本文件中,格是“编号 横坐标 纵坐标”。Python中需要读取这个文件,解析坐标,计算距离矩阵。注意距离可能是欧几里得距离,取整数或者保留小数。对于动态规划,可能需要使用bitmask表示访问过的城市集合,但29位可能超过Python的整数位数,不过Python支持大整数,所以没问题,但空间可能不够,得用字典或者数组来存储状态。 现在,具体到每个算法实现的步骤: 对于贪婪算法: 1. 读取坐标,构建距离矩阵。 2. 初始化路径,比如从城市0开始。 3. 当前城市设为0,标记为已访问。 4. 循环直到所有城市被访问: a. 找到当前城市近的未访问城市。 b. 添加到路径,设为当前城市。 5. 后回到起点,计算总距离。 但可能会有问题,比如路径中途无法继续时,但TSP是完全图,所以总有路径。不过可能得到的路径交叉,效果不好。 邻近插入算法: 1. 初始化一个子环路,比如选三个城市形成一个环。 2. 剩下的城市依次插入: a. 对于每个未插入的城市,计算插入到环路中所有可能位置的成本增量。 b. 找到小增量的城市位置,进插入。 3. 重复直到所有城市加入。 需要注意初始环的选择可能影响结果,可能可以随机选择一个城市,然后找近的两个形成初始环。 2-Opt算法: 1. 输入一个路径,比如从贪婪或邻近得到的结果。 2. 创建路径的副本,比如列表形3. 改进标志设为True。 4. 当改进发生时: a. 遍历所有ij(i < j)。 b. 计算反转i到j之间的路径后的新距离。 c. 如果新距离更小,则执反转,设置改进标志。 5. 直到没有改进为止。 需要注意,每次反转后立即应用,或者遍历所有可能后再选择优的,这里可能需要不同的策略,比如第一个提升就交换,或者找大的提升。通常采用前者,容易实现。 关于动态规划的实现,可以参考Held-Karp算法。状态表示为(当前城市,已访问的城市集合),存储的是到达该状态的小距离。递归是dp[city][mask] = min(dp[prev_city][mask - prev_city] + distance[prev_city][city])。对于29个城市,mask是2^29,大约是536,870,912种状态,每个状态有28个可能的prev_city,存储的话可能需要大量的内存,但可以用字典或者位掩码优化。不过Python处理这样的问题可能会很慢,可能需要使用记忆化剪枝,或者换用其他更高效的语言。不过用户要求用Python,所以可能需要做一些优化,比如使用lru_cache,但29个城市可能超过递归深度或者缓存大小限制。可能需要用迭代的方,或者分治策略。 神经网络方面,可能使用强化学习的方法,比如指针网络(Pointer Network),但实现起来比较复杂,需要深度学习框架如TensorFlow或PyTorch。或者用遗传算法等其他启发式方法,但用户指定了神经网络或动态规划,所以可能需要尝试简单的神经网络方法,比如自组织映射(SOM)或者Hopfield网络,不过效果可能有限。 现在,将这些思路转化为具体的代码结构,并注意处理文件读取、距离计算等细节。例如,读取文件可以使用Python的open函数,按分割,提取编号坐标,存储为字典或列表。计算距离时,注意使用欧氏距离,并可能取整或者保留小数。 可能的错误点包括:距离矩阵的计算是否正确,路径是否正确闭合,插入算法中的环路维护是否正确,2-Opt的路径反转是否正确处理,动态规划的状态转移是否正确等。此外,处理大mask时的内存问题。 在思考题部分,消除子回路的约束可能需要参考TSP的整数规划模型中的子回路消除约束。例如,DFJ(Dantzig-Fulkerson-Johnson)约束,即对于每个子集S,至少有一条进入离开S。或者使用MTZ约束,引入辅助变量u_i,使得对于每条(i,j),如果i在路径中出现在j之前,则u_i - u_j + n x_ij ≤ n-1,这样可以防止子回路。 综上,我需要将这些思路组织成结构化的步骤,给出Python代码示例,并解释关键点。同时回答思考题的问题,解释清楚约束条件实现方法。</think>### 分步解答: --- ### **一、算法实现部分** #### **1. 贪婪算法实现** **步骤说明**: 1. **读取数据**:从文件加载29个城市的坐标。 2. **计算距离矩阵**:存储每两个城市间的欧氏距离。 3. **构建路径**:从起点开始,每次选择近的未访问城市加入路径,直到所有城市被访问。 4. **闭合路径**:后回到起点,计算总距离。 **Python代码**: ```python import math def read_coords(filename): coords = [] with open(filename, &#39;r&#39;) as f: for line in f: parts = line.strip().split() coords.append((float(parts[1]), float(parts[2]))) return coords def euclidean_distance(a, b): return math.sqrt((a[0]-b[0])**2 + (a[1]-b[1])**2) def greedy_tsp(coords): n = len(coords) distance = [[euclidean_distance(coords[i], coords[j]) for j in range(n)] for i in range(n)] path = [0] unvisited = set(range(1, n)) current = 0 while unvisited: nearest = min(unvisited, key=lambda x: distance[current][x]) path.append(nearest) unvisited.remove(nearest) current = nearest path.append(0) # 回到起点 total_dist = sum(distance[path[i]][path[i+1]] for i in range(n)) return path, total_dist # 使用示例 coords = read_coords(&#39;cities.txt&#39;) path, dist = greedy_tsp(coords) print("贪婪算法路径:", path) print("总距离:", dist) ``` --- #### **2. 邻近插入算法** **步骤说明**: 1. **初始化子环路**:选择3个城市形成初始环路。 2. **插入剩余城市**:每次选择使环路长度增加少的城市位置插入。 **Python代码**: ```python def nearest_insertion(coords): n = len(coords) distance = [[euclidean_distance(coords[i], coords[j]) for j in range(n)] for i in range(n)] # 初始环路:城市0 -> 近城市 -> 次近城市 -> 0 start = 0 nearest = min(range(1, n), key=lambda x: distance[start][x]) second_nearest = min([x for x in range(1, n) if x != nearest], key=lambda x: distance[nearest][x]) path = [start, nearest, second_nearest, start] unvisited = set(range(n)) - {start, nearest, second_nearest} while unvisited: min_increase = float(&#39;inf&#39;) best_city = None best_pos = -1 for city in unvisited: for i in range(len(path)-1): a, b = path[i], path[i+1] increase = distance[a][city] + distance[city][b] - distance[a][b] if increase < min_increase: min_increase = increase best_city = city best_pos = i + 1 # 插入在ii+1之间 if best_city is not None: path.insert(best_pos, best_city) unvisited.remove(best_city) total_dist = sum(distance[path[i]][path[i+1]] for i in range(len(path)-1)) return path, total_dist # 使用示例 path_ni, dist_ni = nearest_insertion(coords) print("邻近插入路径:", path_ni) print("总距离:", dist_ni) ``` --- #### **3. 2-Opt算法改进** **步骤说明**: 1. **输入初始路径**:接受贪婪或邻近插入的结果。 2. **反转优化**:遍历所有可能的对,若反转后路径更则更新。 **Python代码**: ```python def two_opt(path, distance): n = len(path) improved = True while improved: improved = False for i in range(1, n-2): for j in range(i+1, n-1): a, b, c, d = path[i-1], path[i], path[j], path[j+1] if distance[a][b] + distance[c][d] > distance[a][c] + distance[b][d]: # 反转i到j之间的路径 path[i:j+1] = reversed(path[i:j+1]) improved = True n = len(path) # 更新路径长度 total_dist = sum(distance[path[i]][path[i+1]] for i in range(len(path)-1)) return path, total_dist # 使用示例(假设已有初始路径) # 改进贪婪算法结果 distance_matrix = [[euclidean_distance(coords[i], coords[j]) for j in range(29)] for i in range(29)] improved_path, improved_dist = two_opt(path, distance_matrix) print("2-Opt改进后路径:", improved_path) print("改进后距离:", improved_dist) ``` --- ### **二、思考题解答** #### **(1) TSP消除子回路的约束解释** 在TSP的整数规划模型中,子回路消除约束的核心是防止路径分裂为多个不连通的环。常用方法包括: - **DFJ约束**:对任意非空真子集$S \subset V$,要求进入离开$S$的数至少为2: $$\sum_{i \in S, j \notin S} x_{ij} \geq 2$$ - **MTZ约束**:引入辅助变量$u_i$,若路径中$i$在$j$之前,则: $$u_i - u_j + n \cdot x_{ij} \leq n-1 \quad \forall i,j \neq 0$$ 确保路径顺序唯一。 --- #### **(2) 动态规划实现TSP** **Held-Karp算法**利用状态压缩,时间复杂度为$O(n^2 2^n)$,对$n=29$需优化存储。 **Python代码**: ```python from functools import lru_cache def held_karp(coords): n = len(coords) distance = [[euclidean_distance(coords[i], coords[j]) for j in range(n)] for i in range(n)] @lru_cache(maxsize=None) def dp(mask, pos): if mask == (1 << n) - 1: return distance[pos][0] # 返回起点 min_dist = float(&#39;inf&#39;) for city in range(n): if not (mask & (1 << city)): new_mask = mask | (1 << city) d = distance[pos][city] + dp(new_mask, city) if d < min_dist: min_dist = d return min_dist return dp(1, 0) # 从起点0出发,已访问城市0 # 使用示例(注:n=29时需极大内存计算时间) # total_dist = held_karp(coords) ``` --- ### **三、总结** - **贪婪算法****邻近插入**属于启发式算法,速度快但可能非优。 - **2-Opt**可局部优化结果,显著减少路径长度。 - **动态规划**精确但受限于规模,$n=29$时需高性能计算资源。 - **消除子回路**的约束确保单一环路,是TSP建模的关键。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值