from pyscipopt import Model, quicksum
from vtk import *
import vtk
import random as rd
import time
import numpy as np
import functools
#数据生成,输入为箱子种类数,箱子最大长、最小长、最大宽、最小宽、商品个数、商品最大长、最小长、最大宽、最小宽
#输出为生成的箱子列表和商品列表
def data_generate_3d(nums_box, max_edge_box, min_edge_box, nums_good, max_edge_good, min_edge_good):
#随机生成箱子
boxs = []
for i in range(nums_box):
boxs.append([int((max_edge_box-min_edge_box) * rd.random() + min_edge_box),
int((max_edge_box-min_edge_box) * rd.random() + min_edge_box),
int((max_edge_box-min_edge_box) * rd.random() + min_edge_box)])
#随机生成商品
goods = []
for i in range(nums_good):
goods.append([int((max_edge_good-min_edge_good) * rd.random() + min_edge_good),
int((max_edge_good-min_edge_good) * rd.random() + min_edge_good),
int((max_edge_good-min_edge_good) * rd.random() + min_edge_good)])
return boxs,goods
#二维商品排序用
def cmp_2d(x,y):
if x[0] < y[0]:
return -1
elif x[0] > y[0]:
return 1
elif x[1] < y[1]:
return -1
elif x[1] > y[1]:
return 1
else:
return 0
#三维商品排序用
def cmp_3d(x,y):
if x[0] < y[0]:
return -1
elif x[0] > y[0]:
return 1
elif x[1] < y[1]:
return -1
elif x[1] > y[1]:
return 1
elif x[2] < y[2]:
return -1
elif x[2] > y[2]:
return 1
else:
return 0
def data_pre(boxs, goods):
#箱子长边作长,放前面
for i in range(len(boxs)):
boxs[i] = sorted(boxs[i], reverse=True)
#箱子排序,大的放前面
boxs = sorted(boxs, key=functools.cmp_to_key(cmp_3d), reverse=True)
#箱子种类去重
i = 0
while i < len(boxs) - 1:
j = i + 1
while j < len(boxs):
if boxs[i][0] == boxs[j][0] and boxs[i][1] == boxs[j][1] and boxs[i][2] == boxs[j][2]:
del boxs[j]
else:
j += 1
i += 1
#商品长边作长,放前面
for i in range(len(goods)):
goods[i] = sorted(goods[i], reverse=True)
#商品排序,大的放前面
goods = sorted(goods, key=functools.cmp_to_key(cmp_3d), reverse=True)
return boxs,goods
#检验是否每个商品都能有一个箱子放下它
def check_3d(boxs, goods):
for good in goods:
can_put = False
for box in boxs:
if good[0] <= box[0] and good[1] <= box[1] and good[2] <= box[2]:
can_put = True
break
if not can_put:
print(good,"太大,无合适箱子")
return False
return True
#三维装箱整数规划
def IP_3d(boxs, goods, time_limit):
m = len(boxs)
n = len(goods)
M = max([max(boxs[i]) for i in range(m)])*10
model = Model("IP_3d")
#对X、Y,i为包裹下标,j为商品下标,x[i][j]=1代表第j件商品放进第i个包裹里,y[i]=1表示开启第i个包裹
X = [[model.addVar(vtype="B", name="X[%s,%s]" % (i, j)) for j in range(n)] for i in range(m*n)]
Y = [model.addVar(vtype="B", name="Y[%s]" % i) for i in range(m*n)]
#包裹面积向量,[n个boxs[0],n个boxs[1],...,n个boxs[m-1]]
c = [boxs[i][0]*boxs[i][1]*boxs[i][2] for i in range(len(boxs)) for j in range(len(goods))]
cb = [boxs[i] for i in range(len(boxs)) for j in range(len(goods))]
#码放形式,1代表(l,w), 0代表(w,l)
tp1 = [model.addVar(vtype="B", name="tp1[%s]" % i) for i in range(n)]
tp2 = [model.addVar(vtype="B", name="tp2[%s]" % i) for i in range(n)]
tp3 = [model.addVar(vtype="B", name="tp3[%s]" % i) for i in range(n)]
tp4 = [model.addVar(vtype="B", name="tp4[%s]" % i) for i in range(n)]
tp5 = [model.addVar(vtype="B", name="tp5[%s]" % i) for i in range(n)]
tp6 = [model.addVar(vtype="B", name="tp6[%s]" % i) for i in range(n)]
#码放长、宽、坐标x、y、z
L = [model.addVar(vtype="I", name="L[%s]" % i) for i in range(n)]
W = [model.addVar(vtype="I", name="W[%s]" % i) for i in range(n)]
H = [model.addVar(vtype="I", name="H[%s]" % i) for i in range(n)]
x = [model.addVar(vtype="I", name="x[%s]" % i) for i in range(n)]
y = [model.addVar(vtype="I", name="y[%s]" % i) for i in range(n)]
z = [model.addVar(vtype="I", name="y[%s]" % i) for i in range(n)]
#选择变量,fx[i][j]=1代表i在j的左边(小),fy[i][j]=1同理,f[i][j][k]=1代表j、k同时在第i个箱子中
fx = [[model.addVar(vtype="B", name="fx[%s,%s]" % (i, j)) for j in range(n)] for i in range(n)]
fy = [[model.addVar(vtype="B", name="fy[%s,%s]" % (i, j)) for j in range(n)] for i in range(n)]
fz = [[model.addVar(vtype="B", name="fz[%s,%s]" % (i, j)) for j in range(n)] for i in range(n)]
f = [[[model.addVar(vtype="B", name="f[%s,%s,%s]" % (i, j, k)) for k in range(n)] for j in range(n)] for i in range(m*n)]
#以总包裹体积最小(即填充率最大)为目标
model.setObjective(quicksum(Y[i]*c[i] for i in range(m*n)), "minimize")
# 使用前必须开启
for i in range(m * n):
for j in range(n):
model.addCons(X[i][j] - Y[i] <= 0)
#每个商品都能被装下
for j in range(n):
model.addCons(quicksum(X[i][j] for i in range(m * n)) == 1)
#码放长宽约束
for j in range(n):
model.addCons(tp1[j] + tp2[j] + tp3[j] + tp4[j] + tp5[j] + tp6[j] == 1)
model.addCons(L[j] - goods[j][0] * (tp1[j] + tp2[j]) - goods[j][1] * (tp3[j] + tp4[j]) - goods[j][2] * (tp5[j] + tp6[j]) == 0)
model.addCons(W[j] - goods[j][0] * (tp3[j] + tp5[j]) - goods[j][1] * (tp1[j] + tp6[j]) - goods[j][2] * (tp2[j] + tp4[j]) == 0)
model.addCons(H[j] - goods[j][0] * (tp4[j] + tp6[j]) - goods[j][1] * (tp2[j] + tp5[j]) - goods[j][2] * (tp1[j] + tp3[j]) == 0)
#位置约束,大于0,不超过边界,不相交
for j in range(n):
model.addCons(x[j] >= 0)
model.addCons(y[j] >= 0)
model.addCons(z[j] >= 0)
for i in range(m*n):
for j in range(n):
model.addCons(x[j] + L[j] - cb[i][0] - M * (1 - X[i][j]) <= 0)
model.addCons(y[j] + W[j] - cb[i][1] - M * (1 - X[i][j]) <= 0)
model.addCons(z[j] + H[j] - cb[i][2] - M * (1 - X[i][j]) <= 0)
for j in range(n):
for k in range(j+1,n):
model.addCons(x[j] + L[j] - x[k] - M * (1 - fx[j][k]) <= 0)
model.addCons(x[k] + L[k] - x[j] - M * (1 - fx[k][j]) <= 0)
model.addCons(y[j] + W[j] - y[k] - M * (1 - fy[j][k]) <= 0)
model.addCons(y[k] + W[k] - y[j] - M * (1 - fy[k][j]) <= 0)
model.addCons(z[j] + H[j] - z[k] - M * (1 - fz[j][k]) <= 0)
model.addCons(z[k] + H[k] - z[j] - M * (1 - fz[k][j]) <= 0)
for i in range(m*n):
for j in range(n):
for k in range(j+1,n):
model.addCons(X[i][j] + X[i][k] - 1 - M*(1 - f[i][j][k]) <= 0)
for j in range(n):
for k in range(j+1,n):
model.addCons(fx[j][k] + fx[k][j] + fy[j][k] + fy[k][j] + fz[j][k] + fz[k][j] + quicksum(f[i][j][k] for i in range(m*n)) >= m*n)
#设置求解时间
model.setRealParam("limits/time", time_limit)
model.optimize()
print("\ngap:",model.getGap())
#拿结果
X1 = [[round(model.getVal(X[i][j])) for j in range(n)] for i in range(m * n)]
L1 = [round(model.getVal(L[i])) for i in range(n)]
W1 = [round(model.getVal(W[i])) for i in range(n)]
H1 = [round(model.getVal(H[i])) for i in range(n)]
x1 = [round(model.getVal(x[i])) for i in range(n)]
y1 = [round(model.getVal(y[i])) for i in range(n)]
z1 = [round(model.getVal(z[i])) for i in range(n)]
L_box = []
L_goods = []
L_coordinates = []
for i in range(m*n):
goods_i = []
coordinates_i = []
for j in range(n):
if X1[i][j] == 1:
goods_i.append(goods[j])
coordinates_i.append([L1[j],W1[j],H1[j],x1[j],y1[j],z1[j]])
if len(goods_i) > 0:
L_box.append(cb[i])
L_goods.append(goods_i)
L_coordinates.append(coordinates_i)
return L_box, L_goods, L_coordinates, model.getGap()
def can_put_3d(l, w, h, goods):
L = max(l,w,h)
H = min(l,w,h)
W = l+w+h-L-H
for good in goods:
lg = max(good[0], good[1], good[2])
hg = min(good[0], good[1], good[2])
wg = good[0] + good[1] + good[2] - lg - hg
if lg > L or wg > W or hg > H:
return False
return True
#先以w为限制码垛,再以l为限制码垛
#输入为长、宽、商品集,输出为箱子个数
def packing_simple(l, w, h, goods):
#先检查是否每一个商品在此规则下都能放下
if not can_put_3d(l, w, h, goods):
return -1
#以h为限制码垛成条,商品排序,大的放前面
goods1 = []
for good in goods:
if good[0] <= l and good[1] <= w and good[2] <= h:
goods1.append([good[0], good[1], good[2]])
elif good[0] <= l and good[2] <= w and good[1] <= h:
goods1.append([good[0], good[2], good[1]])
elif good[1] <= l and good[0] <= w and good[2] <= h:
goods1.append([good[1], good[0], good[2]])
elif good[1] <= l and good[2] <= w and good[0] <= h:
goods1.append([good[1], good[2], good[0]])
elif good[2] <= l and good[0] <= w and good[1] <= h:
goods1.append([good[2], good[0], good[1]])
else:
goods1.append([good[2], good[1], good[0]])
goods1 = sorted(goods1, key=functools.cmp_to_key(cmp_3d), reverse=True)
strips = []
goods1_used = [0 for i in range(len(goods1))]
while sum(goods1_used) < len(goods1_used):
l_used = 0
w_used = 0
h_used = 0
for i in range(len(goods1_used)):
if goods1_used[i] == 0 and h_used + goods1[i][2] <= h:
l_used = max(l_used, goods1[i][0])
w_used = max(w_used, goods1[i][1])
h_used += goods1[i][2]
goods1_used[i] = 1
strips.append([l_used, w_used])
strips = sorted(strips, key=functools.cmp_to_key(cmp_2d), reverse=True)
#以w为限制码垛成层
levels = []
strip_used = [0 for i in range(len(strips))]
while sum(strip_used) < len(strip_used):
l_used = 0
w_used = 0
for i in range(len(strips)):
if strip_used[i] == 0 and w_used + strips[i][1] <= w:
l_used = max(l_used, strips[i][0])
w_used += strips[i][1]
strip_used[i] = 1
levels.append(l_used)
#再以l为限制码垛
levels = sorted(levels, reverse=True)
L_box_unused = [l]
for level in levels:
flag = -1
for i in range(len(L_box_unused)):
if L_box_unused[i] >= level:
if flag == -1:
flag = i
elif L_box_unused[i] < L_box_unused[flag]:
flag = i
if flag == -1:
L_box_unused.append(l - level)
else:
L_box_unused[flag] -= level
return len(L_box_unused)
#选择合适的主箱子
def box_choose_3d(boxs, nums_simplePacking_1, nums_simplePacking_2,nums_simplePacking_3, nums_simplePacking_4,nums_simplePacking_5, nums_simplePacking_6):
l = -1
w = -1
h = -1
nums = -1
for i in range(len(boxs)):
if nums_simplePacking_1[i] != -1:
if nums == -1 or (nums != -1 and nums > nums_simplePacking_1[i]) or (nums != -1 and nums == nums_simplePacking_1[i] and l * w * h > boxs[i][0] * boxs[i][1] * boxs[i][2]):
l = boxs[i][0]
w = boxs[i][1]
h = boxs[i][2]
nums = nums_simplePacking_1[i]
if nums_simplePacking_2[i] != -1:
if nums == -1 or (nums != -1 and nums > nums_simplePacking_2[i]) or (nums != -1 and nums == nums_simplePacking_2[i] and l * w * h > boxs[i][0] * boxs[i][1] * boxs[i][2]):
l = boxs[i][0]
w = boxs[i][2]
h = boxs[i][1]
nums = nums_simplePacking_2[i]
if nums_simplePacking_3[i] != -1:
if nums == -1 or (nums != -1 and nums > nums_simplePacking_3[i]) or (nums != -1 and nums == nums_simplePacking_3[i] and l * w * h > boxs[i][0] * boxs[i][1] * boxs[i][2]):
l = boxs[i][1]
w = boxs[i][0]
h = boxs[i][2]
nums = nums_simplePacking_3[i]
if nums_simplePacking_4[i] != -1:
if nums == -1 or (nums != -1 and nums > nums_simplePacking_4[i]) or (nums != -1 and nums == nums_simplePacking_4[i] and l * w * h > boxs[i][0] * boxs[i][1] * boxs[i][2]):
l = boxs[i][1]
w = boxs[i][2]
h = boxs[i][0]
nums = nums_simplePacking_4[i]
if nums_simplePacking_5[i] != -1:
if nums == -1 or (nums != -1 and nums > nums_simplePacking_5[i]) or (nums != -1 and nums == nums_simplePacking_5[i] and l * w * h > boxs[i][0] * boxs[i][1] * boxs[i][2]):
l = boxs[i][2]
w = boxs[i][0]
h = boxs[i][1]
nums = nums_simplePacking_5[i]
if nums_simplePacking_6[i] != -1:
if nums == -1 or (nums != -1 and nums > nums_simplePacking_6[i]) or (nums != -1 and nums == nums_simplePacking_6[i] and l * w * h > boxs[i][0] * boxs[i][1] * boxs[i][2]):
l = boxs[i][2]
w = boxs[i][1]
h = boxs[i][0]
nums = nums_simplePacking_6[i]
return l,w,h
def packing_3d(l, w, h, goods):
# 先检查是否每一个商品在此规则下都能放下
if not can_put_3d(l, w, h, goods):
return -1
# 以h为限制码垛成条,商品排序,大的放前面
goods1 = []
for good in goods:
if good[0] <= l and good[1] <= w and good[2] <= h:
goods1.append([good[0], good[1], good[2]])
elif good[0] <= l and good[2] <= w and good[1] <= h:
goods1.append([good[0], good[2], good[1]])
elif good[1] <= l and good[0] <= w and good[2] <= h:
goods1.append([good[1], good[0], good[2]])
elif good[1] <= l and good[2] <= w and good[0] <= h:
goods1.append([good[1], good[2], good[0]])
elif good[2] <= l and good[0] <= w and good[1] <= h:
goods1.append([good[2], good[0], good[1]])
else:
goods1.append([good[2], good[1], good[0]])
goods1 = sorted(goods1, key=functools.cmp_to_key(cmp_3d), reverse=True)
strips = []
strips_goods = []
goods1_used = [0 for i in range(len(goods1))]
while sum(goods1_used) < len(goods1_used):
l_used = 0
w_used = 0
h_used = 0
strip_goods = []
for i in range(len(goods1_used)):
if goods1_used[i] == 0 and h_used + goods1[i][2] <= h:
l_used = max(l_used, goods1[i][0])
w_used = max(w_used, goods1[i][1])
strip_goods.append([goods1[i][0], goods1[i][1], goods1[i][2], 0, 0, h_used])
h_used += goods1[i][2]
goods1_used[i] = 1
strips.append([l_used, w_used])
strips_goods.append(strip_goods)
# 以w为限制码垛成层
for i in range(len(strips)-1):
for j in range(i+1,len(strips)):
if strips[i][0] < strips[j][0] or (strips[i][0] == strips[j][0] and strips[i][1] < strips[j][1]):
temp = strips[i]
strips[i] = strips[j]
strips[j] = temp
temp1 = strips_goods[i]
strips_goods[i] = strips_goods[j]
strips_goods[j] = temp1
levels = []
levels_goods = []
strip_used = [0 for i in range(len(strips))]
while sum(strip_used) < len(strip_used):
l_used = 0
w_used = 0
level_goods = []
for i in range(len(strips)):
if strip_used[i] == 0 and w_used + strips[i][1] <= w:
l_used = max(l_used, strips[i][0])
for g in strips_goods[i]:
level_goods.append([g[0],g[1],g[2],0,w_used,g[5]])
w_used += strips[i][1]
strip_used[i] = 1
levels.append(l_used)
levels_goods.append(level_goods)
# 再以l为限制码垛
for i in range(len(levels)-1):
for j in range(i+1,len(levels)):
if levels[i] < levels[j]:
temp = levels[i]
levels[i] = levels[j]
levels[j] = temp
temp1 = levels_goods[i]
levels_goods[i] = levels_goods[j]
levels_goods[j] = temp1
L_box_unused = [l]
L_goods = []
L_coordinates = []
L_goods.append([])
L_coordinates.append([])
for i in range(len(levels)):
flag = -1
for j in range(len(L_box_unused)):
if L_box_unused[j] >= levels[j]:
if flag == -1 or (flag != -1 and L_box_unused[j] < L_box_unused[flag]):
flag = j
if flag == -1:
L_box_unused.append(l - levels[i])
L_goods.append([levels_goods[i][j][:3] for j in range(len(levels_goods[i]))])
L_coordinates.append([levels_goods[i]])
else:
L_box_unused[flag] -= levels[i]
L_goods[flag] += [levels_goods[i][j][:3] for j in range(len(levels_goods[i]))]
if len(L_coordinates[flag]) == 0:
L_coordinates[flag] += [levels_goods[i]]
else:
L_coordinates[flag] += [[[levels_goods[i][j][0], levels_goods[i][j][1], levels_goods[i][j][2], L_coordinates[flag][-1][0][0] + L_coordinates[flag][-1][0][3], levels_goods[i][j][4], levels_goods[i][j][5]] for j in range(len(levels_goods[i]))]]
L_coordinates_merge = []
for i in range(len(L_coordinates)):
L_coordinates_i = []
for j in range(len(L_coordinates[i])):
L_coordinates_i += L_coordinates[i][j]
L_coordinates_merge.append(L_coordinates_i)
L_box = [[l, w, h] for i in range(len(L_box_unused))]
return L_box, L_goods, L_coordinates_merge
#正交二叉树启发式,试每一种箱子装下所有的商品需要的个数,取最少的,再去缩减最后一个箱子
def OBT_3d(boxs, goods):
#分别以长宽作为限制,依次码垛成层
nums_simplePacking_1 = []
nums_simplePacking_2 = []
nums_simplePacking_3 = []
nums_simplePacking_4 = []
nums_simplePacking_5 = []
nums_simplePacking_6 = []
for box in boxs:
nums_simplePacking_1.append(packing_simple(box[0], box[1], box[2], goods))
nums_simplePacking_2.append(packing_simple(box[0], box[2], box[1], goods))
nums_simplePacking_3.append(packing_simple(box[1], box[0], box[2], goods))
nums_simplePacking_4.append(packing_simple(box[1], box[2], box[0], goods))
nums_simplePacking_5.append(packing_simple(box[2], box[0], box[1], goods))
nums_simplePacking_6.append(packing_simple(box[2], box[1], box[0], goods))
#找箱子数最少的箱子
l,w,h = box_choose_3d(boxs, nums_simplePacking_1, nums_simplePacking_2,nums_simplePacking_3, nums_simplePacking_4,nums_simplePacking_5, nums_simplePacking_6)
#装载
L_box, L_goods, L_coordinates = packing_3d(l, w, h, goods)
return L_box, L_goods, L_coordinates
#检验结果中的商品集是否和原始的商品集一致
def goods_check(goods, L_goods):
nums = 0
for gs in L_goods:
nums += len(gs)
if len(goods) == nums:
return True
return False
#任务分流汇总
#给一系列箱子和商品(箱子可用个数不限),推荐结果
def stacking_3d(boxs, goods, time_limit, nums_limit):
#长宽预处理,降序排序,箱子去重
boxs, goods = data_pre(boxs, goods)
#这里是否所有的商品均至少有一个箱子可以装下,若有商品超出规格则直接返回
if not check_3d(boxs, goods):
return [[], []]
#当商品数超过一定数量时,直接采用启发式算法
if len(goods) > nums_limit:
return OBT_3d(boxs, goods)
# 多类箱子,应用整数规划求解
L_box, L_goods, L_coordinates, gap = IP_3d(boxs, goods, time_limit)
# 结果检验,当求解器的结果有问题(商品数不符时)采用混合OBT求解方案
if not goods_check(goods, L_goods):
return OBT_3d(boxs, goods)
# gap较大时,用启发式方法比较,取优
if gap >= 0.01:
print("尝试采用启发式方法")
L_box1, L_goods1, L_coordinates1 = OBT_3d(boxs, goods)
if sum([L_box[i][0]*L_box[i][1]*L_box[i][2] for i in range(len(L_box))]) > sum([L_box1[i][0]*L_box1[i][1]*L_box1[i][2] for i in range(len(L_box1))]) and goods_check(goods, L_goods1):
print("采用启发式方法")
L_box, L_goods, L_coordinates = L_box1, L_goods1, L_coordinates1
return L_box, L_goods, L_coordinates
#添加商品图形
def Addcube_3d(ren, coordinate, edge_max, x_re, y_re, z_re):
cube = vtk.vtkCubeSource()
cube.SetXLength(coordinate[0]/edge_max)
cube.SetYLength(coordinate[1]/edge_max)
cube.SetZLength(coordinate[2]/edge_max)
cube.Update()
translation = vtkTransform()
translation.Translate((coordinate[3] + coordinate[0]/2.0)/edge_max + x_re, (coordinate[4] + coordinate[1]/2.0)/edge_max + y_re, (coordinate[5] + coordinate[2]/2.0)/edge_max + z_re)
transformFilter = vtkTransformPolyDataFilter()
transformFilter.SetInputConnection(cube.GetOutputPort())
transformFilter.SetTransform(translation)
transformFilter.Update()
transformedMapper = vtkPolyDataMapper()
transformedMapper.SetInputConnection(transformFilter.GetOutputPort())
transformedActor = vtkActor()
transformedActor.SetMapper(transformedMapper)
transformedActor.GetProperty().SetColor((rd.uniform(0, 1), rd.uniform(0, 1), rd.uniform(0, 1)))
ren.AddActor(transformedActor)
def png_save(renWin, name):
windowToImageFilter = vtkWindowToImageFilter()
windowToImageFilter.SetInput(renWin)
windowToImageFilter.Update()
writer = vtkPNGWriter()
writer.SetFileName(name)
writer.SetInputConnection(windowToImageFilter.GetOutputPort())
writer.Write()
#三维展示,输入为箱子集和商品集,包裹的箱子和商品集一一对应
def show_3d(L_box, L_coordinates):
nums = len(L_box)
edge_max = max([max(L_box[i]) for i in range(len(L_box))]) if max([max(L_box[i]) for i in range(len(L_box))]) > 0 else 1
#预设参数
gap = 0.25
CL_p = 1.1
CW_p = nums + gap * (nums - 1)
CH_p = 0.01
gap = 0.25
x_re = -0.5
y_re = -0.5
z_re = -0.5
#渲染及渲染窗口,并根据捕捉的鼠标事件执行相应的操作
ren = vtk.vtkRenderer()
renWin = vtk.vtkRenderWindow()
renWin.AddRenderer(ren)
renWin.SetSize(1200, 600)
iren = vtk.vtkRenderWindowInteractor()
iren.SetRenderWindow(renWin)
"""画容器"""
for i in range(nums):
cube = vtk.vtkCubeSource()
cube.SetXLength(L_box[i][0]/edge_max)
cube.SetYLength(L_box[i][1]/edge_max)
cube.SetZLength(L_box[i][2]/edge_max)
cube.Update()
translation = vtkTransform()
translation.Translate(L_box[i][0]/edge_max/2.0 + x_re, L_box[i][1]/edge_max/2.0 + i + gap*i + y_re, L_box[i][2]/edge_max/2.0 + z_re)
transformFilter = vtkTransformPolyDataFilter()
transformFilter.SetInputConnection(cube.GetOutputPort())
transformFilter.SetTransform(translation)
transformFilter.Update()
transformedMapper = vtkPolyDataMapper()
transformedMapper.SetInputConnection(transformFilter.GetOutputPort())
transformedActor = vtkActor()
transformedActor.SetMapper(transformedMapper)
transformedActor.GetProperty().SetColor((1, 1, 1))
transformedActor.GetProperty().SetRepresentationToWireframe()
ren.AddActor(transformedActor)
"""画托盘"""
cube = vtk.vtkCubeSource()
cube.SetXLength(CL_p)
cube.SetYLength(CW_p)
cube.SetZLength(CH_p)
cube.Update()
translation = vtkTransform()
translation.Translate(CL_p/2.0 + x_re, CW_p/2.0 + y_re, -CH_p/2.0 + z_re)
transformFilter = vtkTransformPolyDataFilter()
transformFilter.SetInputConnection(cube.GetOutputPort())
transformFilter.SetTransform(translation)
transformFilter.Update()
transformedMapper = vtkPolyDataMapper()
transformedMapper.SetInputConnection(transformFilter.GetOutputPort())
transformedActor = vtkActor()
transformedActor.SetMapper(transformedMapper)
transformedActor.GetProperty().SetColor((0.2, 0.4, 0.8))
ren.AddActor(transformedActor)
for i in range(len(L_coordinates)):
for j in range(len(L_coordinates[i])):
Addcube_3d(ren, L_coordinates[i][j], edge_max, x_re, i + gap*i + y_re, z_re)
camera = vtk.vtkCamera()
camera.SetPosition(5, -0.5, 2)
camera.SetViewUp(0, 0, 1)
ren.SetActiveCamera(camera)
iren.Initialize()
renWin.Render()
# 保存过程
png_save(renWin, "result_D3.png")
# 展示
iren.Start()
# 数值实验, 输入为箱子种类数,箱子最大容积、最小容积、商品个数、商品最大体积、商品最小体积、时间限制、实验次数,
# 输出为OBT平均装载率、OBT平均时间、整数规划平均装载率、整数规划平均时间
def experiment_3d(nums_box, max_edge_box, min_edge_box, nums_good, max_edge_good, min_edge_good, time_limit, times_experiment):
rate_OBT = []
time_OBT = []
rate_IP = []
time_IP = []
for i in range(times_experiment):
for j in range(20):
print("--------------------------", nums_good, "----------------------", i)
boxs, goods = data_generate_3d(nums_box, max_edge_box, min_edge_box, nums_good, max_edge_good, min_edge_good)
# 长宽预处理,降序排序,箱子去重
boxs, goods = data_pre(boxs, goods)
t1 = time.clock()
L_box1, L_goods1, L_coordinates1 = OBT_3d(boxs, goods)
t2 = time.clock()
L_box2, L_goods2, L_coordinates2, gap = IP_3d(boxs, goods, time_limit)
t3 = time.clock()
if sum([L_box1[i][0]*L_box1[i][1]*L_box1[i][2] for i in range(len(L_box1))]) > 0 and goods_check(goods, L_goods2):
rate_OBT.append(sum([goods[i][0]*goods[i][1]*goods[i][2] for i in range(len(goods))])/sum([L_box1[i][0]*L_box1[i][1]*L_box1[i][2] for i in range(len(L_box1))]))
else:
rate_OBT.append(0)
time_OBT.append(t2-t1)
if sum([L_box2[i][0]*L_box2[i][1]*L_box2[i][2] for i in range(len(L_box2))]) > 0 and goods_check(goods, L_goods2):
rate_IP.append(sum([goods[i][0]*goods[i][1]*goods[i][2] for i in range(len(goods))])/sum([L_box2[i][0]*L_box2[i][1]*L_box2[i][2] for i in range(len(L_box2))]))
else:
rate_IP.append(0)
time_IP.append(t3-t2)
print("rate_OBT:", np.mean(rate_OBT))
print("rate_IP:", np.mean(rate_IP))
print("time_OBT:", np.mean(time_OBT))
print("time_IP:", np.mean(time_IP))
return np.mean(rate_OBT), np.mean(rate_IP), np.mean(time_OBT), np.mean(time_IP)
if __name__ == "__main__":
# #生成箱子集和商品集,计算并展示
# boxs,goods = data_generate_3d(nums_box = 2, max_edge_box = 20, min_edge_box = 10, nums_good = 10, max_edge_good = 10, min_edge_good = 1)
# # L_box, L_goods, L_coordinates= stacking_3d(boxs, goods, time_limit = 100, nums_limit = 50)
# L_box, L_goods, L_coordinates = OBT_3d(boxs, goods)
# print(L_box, L_coordinates)
# show_3d(L_box, L_coordinates)
#数值实验
rate_OBT = []
rate_IP = []
time_OBT = []
time_IP = []
for i in range(30):
r1,r2,r3,r4 = experiment_3d(nums_box = 2, max_edge_box = 20, min_edge_box = 10, nums_good = i+1, max_edge_good = 10, min_edge_good = 1, time_limit = 100, times_experiment=50)
rate_OBT.append(r1)
rate_IP.append(r2)
time_OBT.append(r3)
time_IP.append(r4)
print("-------------------------", i+1, "个商品测试完成")
print(rate_OBT)
print(rate_IP)
print(time_OBT)
print(time_IP)