题目描述
1920年的芝加哥,出现了一群强盗。如果两个强盗遇上了,那么他们要么是朋友,要么是敌人。而且有一点是肯定的,就是:
我朋友的朋友是我的朋友;
我敌人的敌人也是我的朋友。
两个强盗是同一团伙的条件是当且仅当他们是朋友。现在给你一些关于强盗们的信息,问你最多有多少个强盗团伙。
输入输出格式
输入格式:
输入文件gangs.in的第一行是一个整数N(2<=N<=1000),表示强盗的个数(从1编号到N)。 第二行M(1<=M<=5000),表示关于强盗的信息条数。 以下M行,每行可能是F p q或是E p q(1<=p q<=N),F表示p和q是朋友,E表示p和q是敌人。输入数据保证不会产生信息的矛盾。
输出格式:
输出文件gangs.out只有一行,表示最大可能的团伙数。
输入输出样例
输入样例#1:
6
4
E 1 4
F 3 5
F 4 6
E 1 2
输出样例#1:
3
这道题的关键是对于敌人怎么处理
一开始试了好多种方法都不行
然后旁边的czq dalao用邻接表+STL90分
后来他下了一个数据点,他就AC了
附上代码
#include<iostream>
#include<cstdio>
#include<queue>
#include<vector>
#define MAXN 5005
using namespace std;
//priority_queue
int m,n;
int fa[MAXN];
int fnd(int x){
if(x==fa[x]) return x;
return fa[x]=fnd(fa[x]);
}
void cat(int x,int y){
x=fnd(x);
y=fnd(y);
fa[y]=x;
}
bool vis[MAXN];
int main(){
cin>>n>>m;
for(int i=1;i<=n*2+3;i++) fa[i]=i;
char sta;
int x,y;
for(int i=1;i<=m;i++){
cin>>sta>>x>>y;
if(sta=='E'){
fa[fnd(y)]=fnd(x+n);
fa[fnd(y+n)]=fnd(x);
}else{
fa[fnd(x)]=fnd(y);
}
}
for(int i=1;i<=n;i++){
vis[fnd(i)]=true;
}
int cnt=0;
for(int i=1;i<=n*2;i++){
if(vis[i]) cnt++;
}
cout<<cnt;
return 0;
}
可以用并查集的补集来表示敌人就很简单了
#include<cstdio>
#include<iostream>
using namespace std;
int fa[2005];//f[i]:朋友 f[i+n]:敌人
int n,m;
bool in[2005];
int find(int u){
if(u==fa[u]){
return u;
}
return fa[u]=find(fa[u]);
}
int main()
{
cin>>n>>m;
for(int i=1;i<=n*2;i++)
fa[i]=i;
for(int i=1;i<=m;i++)
{
char c;
int y1,x1;
cin>>c>>x1>>y1;
if(c=='E')
{
fa[find(y1+n)]=find(x1);
fa[find(y1)]=find(x1+n);
}
if(c=='F')
fa[find(x1)]=find(y1);
}
for(int i=1;i<=n;i++)
in[find(i)]=true;
int sumn=0;
for(int i=1;i<=n*2;i++)
if(in[i])
sumn++;
cout<<sumn<<endl;
return 0;
}