coze智能体搭建无人值门店销售员回复场景demo--对比zero-shot,one-shot,few-show的效果

在很多日常场景下,通用语言大模型回复内容质量都不太高,而受制于各方面因素制约,在这些场景下也无法对大语言模型进行微调,那么有没有什么通过小成本提高模型回复质量的方法呢?答案之一是:One-shot与Few-shot提示学习法

One-shot与Few-shot提示学习法是基于大语言模型的小样本学习方法,通过极少量示例引导模型完成新任务:

One-shot:向模型提供1个输入-输出示例,使其理解任务模式并生成答案。例如,输入“翻译为英文:苹果→apple”,模型可据此翻译新词。
Few-shot:提供3-5个示例,增强模型对任务多样性和复杂性的理解。例如,展示多组中英对照翻译,提升模型处理特殊句式的准确性。
与“Zero-shot(零样本)”的区别在于:后者完全依赖任务描述而无示例,而One-shot/Few-shot通过少量示例激活模型的上下文学习能力

本功能通过coze平台搭建,借助“无人值门店销售员回复场景”分三次场景对比Zero-shot、One-shot、Few-shot效果,如下是搭建步骤:

  1. 创建新的Agent
  1. 设置面试开场白
  • 在“coze智能体操作台”中间部分找到“开场白”模块展开输入框中并输入开场白内容”,效果如下
    在这里插入图片描述
    -----------------------------------------------------测试效果-----------------------------------------------------------------
    测试场景1. 在不提供优秀回答案例的情况下测试回复效果

  • 在“coze智能体操作台”左侧“人设与回复逻辑”部分添加智能体任务内容
    在这里插入图片描述

  • 测试效果(语言模型默认使用豆包32k)

    • 在“coze智能体操作台”右侧“预览与调试”部分输入内容开始测试,测试结果显示:回复内容有点发散,讲解逻辑不太专业
      在这里插入图片描述

测试场景2. 在提供一个优秀回答案例的情况下测试回复效果

  • 在“coze智能体操作台”左侧“人设与回复逻辑”部分添加智能体任务内容并提供一个优秀回答案例
    在这里插入图片描述

  • 测试效果(语言模型默认使用豆包32k)

    • 在“coze智能体操作台”右侧“预览与调试”部分输入内容开始测试,测试结果显示:回复内容较第一次专业了很多
      在这里插入图片描述

测试场景3. 在提供多个优秀回答案例的情况下测试回复效果

  • 在“coze智能体操作台”左侧“人设与回复逻辑”部分添加智能体任务内容并提供三个优秀回答案例
    在这里插入图片描述

  • 测试效果(语言模型默认使用豆包32k)

    • 在“coze智能体操作台”右侧“预览与调试”部分输入内容开始测试,测试结果显示:回复内容更简洁更专业了
      在这里插入图片描述

总结. 提供优秀回答案例对于大模型的回答内容质量很重要,再条件容许的场景下,尽可能多提供一些优秀案例

---------------------------------------到此结束,点点关注吧,祝各位老板升官发财啊----------------------------------------------------

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值