在很多日常场景下,通用语言大模型回复内容质量都不太高,而受制于各方面因素制约,在这些场景下也无法对大语言模型进行微调,那么有没有什么通过小成本提高模型回复质量的方法呢?答案之一是:One-shot与Few-shot提示学习法
One-shot与Few-shot提示学习法是基于大语言模型的小样本学习方法,通过极少量示例引导模型完成新任务:
One-shot:向模型提供1个输入-输出示例,使其理解任务模式并生成答案。例如,输入“翻译为英文:苹果→apple”,模型可据此翻译新词。
Few-shot:提供3-5个示例,增强模型对任务多样性和复杂性的理解。例如,展示多组中英对照翻译,提升模型处理特殊句式的准确性。
与“Zero-shot(零样本)”的区别在于:后者完全依赖任务描述而无示例,而One-shot/Few-shot通过少量示例激活模型的上下文学习能力
本功能通过coze平台搭建,借助“无人值门店销售员回复场景”分三次场景对比Zero-shot、One-shot、Few-shot效果,如下是搭建步骤:
- 创建新的Agent
- 在coze平台创建一个单Agent
前置步骤可参考往期文章手把手用Coze搭建骑手招聘助手DEMO,学习人设设置及知识库管理,如果自己会创建就自动略过并直接进入下面的流程。
- 进入coze操作台
点击上方图片弹窗中的“确认”按钮跳转到如下“coze智能体操作台”,操作台分成左中右三部分
- 设置面试开场白
-
在“coze智能体操作台”中间部分找到“开场白”模块展开输入框中并输入开场白内容”,效果如下
-----------------------------------------------------测试效果-----------------------------------------------------------------
测试场景1. 在不提供优秀回答案例的情况下测试回复效果 -
在“coze智能体操作台”左侧“人设与回复逻辑”部分添加智能体任务内容
-
测试效果(语言模型默认使用豆包32k)
-
- 在“coze智能体操作台”右侧“预览与调试”部分输入内容开始测试,测试结果显示:回复内容有点发散,讲解逻辑不太专业
- 在“coze智能体操作台”右侧“预览与调试”部分输入内容开始测试,测试结果显示:回复内容有点发散,讲解逻辑不太专业
测试场景2. 在提供一个优秀回答案例的情况下测试回复效果
-
在“coze智能体操作台”左侧“人设与回复逻辑”部分添加智能体任务内容并提供一个优秀回答案例
-
测试效果(语言模型默认使用豆包32k)
-
- 在“coze智能体操作台”右侧“预览与调试”部分输入内容开始测试,测试结果显示:回复内容较第一次专业了很多
- 在“coze智能体操作台”右侧“预览与调试”部分输入内容开始测试,测试结果显示:回复内容较第一次专业了很多
测试场景3. 在提供多个优秀回答案例的情况下测试回复效果
-
在“coze智能体操作台”左侧“人设与回复逻辑”部分添加智能体任务内容并提供三个优秀回答案例
-
测试效果(语言模型默认使用豆包32k)
-
- 在“coze智能体操作台”右侧“预览与调试”部分输入内容开始测试,测试结果显示:回复内容更简洁更专业了
- 在“coze智能体操作台”右侧“预览与调试”部分输入内容开始测试,测试结果显示:回复内容更简洁更专业了
总结. 提供优秀回答案例对于大模型的回答内容质量很重要,再条件容许的场景下,尽可能多提供一些优秀案例
---------------------------------------到此结束,点点关注吧,祝各位老板升官发财啊----------------------------------------------------