机器学习应用数学基础-微分上

O(n)和 o(n)

O(n)

f ( x ) = O ( g ( x ) ) f(x)=O(g(x)) f(x)=O(g(x))

  • order 阶,多项式阶
  • 数学表述: ∃ X 0 , M , f ( x ) ≤ M g ( x ) \exists X_0,M,f(x)\leq Mg(x) X0,M,f(x)Mg(x)
    举例: M = 2 , 2 x 2 = O ( x 2 ) , x 0 任 意 M=2,2x^2=O(x^2),x_0任意 M=22x2=O(x2),x0

o(n)

  • 数学表述: ∀ ε , ∃ X 0 , f ( x ) ≤ ε g ( x ) \forall\varepsilon,\exists X_0,f(x)\leq \varepsilon g(x) ε,X0,f(x)εg(x)
  • 意义:当x足够大时,可以在任意 ε \varepsilon ε条件下成立

极限

X − > ∞ , f ( x ) g ( x ) − > 0 X->\infty ,\frac{f(x)}{g(x)}->0 X>,g(x)f(x)>0
X − > x 1 , f ( x ) − > y 1 X->x_1,f(x)->y_1 X>x1,f(x)>y1


导数

基本运算

  1. 含义
    函数在某一点的变化率

  2. python实现

import sympy as sp  #载入包

str_expr = "x**3-x*3"  
expr = sp.sympify(str_expr)  
print(sp.diff(expr))
  1. 求导的方法

(1)四则运算
+: ( f ( x ) ± g ( x ) ) ′ = f ( x ) ′ ± g ( x ) ′ (f(x)\pm g(x))'=f(x)'\pm g(x)' (f(x)±g(x))=f(x)±g(x)
× : ( u v ) ′ = u ′ v + u v ′ \times:(uv)'=u'v+uv' ×:(uv)=uv+uv
÷ : ( u v ) ′ = u ′ v − u v ′ v 2 \div:(\frac{u}{v})'=\frac{u'v-uv'}{v^2} ÷:(vu)=v2uvuv

(2)复合函数(链式法则)
[ f ( g ( x ) ) ] ′ = f ′ ( g ( x 0 ) ) ∗ g ′ ( x 0 ) [f(g(x))]'=f'(g(x_0))*g'(x_0) [f(g(x))]=f(g(x0))g(x0)
与神经网络关系密切


导数应用

  1. 费马定理
    f ( x ) f(x) f(x)在区间内,当 X = x 0 X=x_0 X=x0时,存在极值=> f ’ ( x 0 ) = 0 f’(x_0)=0 f(x0)=0
    反之不见得成立(反例: y = x 3 y=x^3 y=x3),但可以作为寻找极值的参考。
  • 推导:
    x < x 0 , lim ⁡ x − > x 0 f ( x ) − f ( x 0 ) x − x 0 ≥ 0 x<x_0,\lim_{x->x_0}\frac{f(x)-f(x_0)}{x-x_0}\geq 0 x<x0,x>x0limxx0f(x)f(x0)0
    x < x 0 , lim ⁡ x − > x 0 f ( x ) − f ( x 0 ) x − x 0 ≤ 0 x<x_0,\lim_{x->x_0}\frac{f(x)-f(x_0)}{x-x_0}\leq 0 x<x0,x>x0limxx0f(x)f(x0)0
    f ′ ( x ) 即 ≥ 0 又 ≤ 0 , 所 以 f ′ ( x ) = 0 f'(x)即\geq 0又\leq 0,所以f'(x)=0 f(x)00f(x)=0
  1. 函数逼近
    f ( x ) − f ( x 0 ) x − x 0 = f ′ ( x 0 ) = > f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) \frac{f(x)-f(x_0)}{x-x_0}=f'(x_0)=>f(x)=f(x_0)+f'(x_0)(x-x_0) xx0f(x)f(x0)=f(x0)=>f(x)=f(x0)+f(x0)(xx0)
  • 意义:非线性的函数可以用斜率为 f ′ ( x 0 ) f'(x_0) f(x0)的线性函数近似表示

(1)Rolle中值定理
f ′ ( x 2 ) = 0 , x 0 < x 2 < x 1 , f ( x 0 ) = f ( x 1 ) = 0 f'(x_2)=0, x_0<x_2<x_1,f(x_0)=f(x_1)=0 f(x2)=0,x0<x2<x1,f(x0)=f(x1)=0
Rolle中值定理

(2)拉格朗日中值定理
x 和 x 0 之 间 的 斜 率 = f ( x ) − f ( x 0 ) x − x 0 = f ′ ( x 1 ) , x 0 < x 1 < x x和x_0之间的斜率=\frac{f(x)-f(x_0)}{x-x_0}=f'(x_1),x_0<x_1<x xx0=xx0f(x)f(x0)=f(x1),x0<x1<x
拉格朗日中值定理

  1. 泰勒展开
  • 目的:更精细的拟合f(x)
  • 为了研究函数逼近和函数本身差多少,引入泰勒展开:
    函 数 逼 近 : f ( x ) ≈ f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) 函数逼近:f(x)\approx f(x_0)+f'(x_0)(x-x_0) :f(x)f(x0)+f(x0)(xx0)
    拉 格 朗 日 : f ( x ) = f ( x 0 ) + f ( x 1 ) ( x − x 0 ) , x 1 ∈ [ x 0 , x ] 拉格朗日:f(x)=f(x_0)+f(x_1)(x-x_0),x_1\in[x_0,x] :f(x)=f(x0)+f(x1)(xx0)x1[x0,x]
    f ( x ) = f ( x 0 ) + { ( x − x 0 ) f ′ ( x 0 ) + . . . + ( x − x 0 ) N f ( N ) ( x 0 ) N ! + o ( ( x − x 0 ) N ) } f(x)=f(x_0)+\{(x-x_0)f'(x_0)+...+(x-x_0)^N\frac{f^{(N)}(x_0)}{N!}+o((x-x_0)^N)\} f(x)=f(x0)+{(xx0)f(x0)+...+(xx0)NN!f(N)(x0)+o((xx0)N)}

凸函数

下凸函数

  1. 定义
    连接函数 f ( x ) f(x) f(x)上的 f ( x 1 ) f(x_1) f(x1) f ( x 2 ) f(x_2) f(x2),在 x 1 和 x 2 x_1和x_2 x1x2区间内,函数值均小于线性函数的值,即为下凸函数。
    下凸函数
  • 数学表述:
    线性函数: f ( a ) + θ ( f ( b ) − f ( a ) ) , θ ∈ [ 0 , 1 ] f(a)+\theta(f(b)-f(a)),\theta \in [0,1] f(a)+θ(f(b)f(a)),θ[0,1]
    凸函数: f ( a + θ ( b − a ) ) f(a+\theta(b-a)) f(a+θ(ba))
    线性函数>凸函数

凸函数数学表达

  1. 性质
    (1) f ′ ( x ) < 0 , 当 x < x 0 ; f ′ ( x ) > 0 , 当 x > x 0 f'(x)<0,当x<x_0;f'(x)>0,当x>x_0 f(x)<0,x<x0;f(x)>0,x>x0
    (2) f ′ ′ ( x ) > 0 f''(x)>0 fx>0

上凸函数

  1. 定义
    连接函数 f ( x ) f(x) f(x)上的 f ( x 1 ) f(x_1) f(x1) f ( x 2 ) f(x_2) f(x2),在 x 1 和 x 2 x_1和x_2 x1x2区间内,函数值均大于线性函数的值,即为上凸函数。

上凸函数

  1. 性质
    (1) f ′ ( x ) > 0 , 当 x < x 0 ; f ′ ( x ) < 0 , 当 x > x 0 f'(x)>0,当x<x_0;f'(x)<0,当x>x_0 f(x)>0,x<x0;f(x)<0,x>x0
    (2) f ′ ′ ( x ) < 0 f''(x)< 0 fx<0
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值