【机器学习】数学基础-微积分

这篇博客详细介绍了微积分的基础知识,包括O(n)时间复杂度的概念、导数的定义与求导法则,利用Python的sympy模块进行非数值计算,以及泰勒展开、洛必达法则和凸函数的优化概念。此外,还探讨了多元函数的偏导数、方向导数、可微性、梯度和拉格朗日乘数法在解决最优化问题中的应用。
摘要由CSDN通过智能技术生成

微分上:

1.O(n)是一个函数,表征算法时间复杂度的一个函数。

2.极限:略,高数

3.导数:高数—变化率,记一下求导公式
快速求导途径:
1.求导网站:https://www.derivative-calculator.net/
2.python模块 sympy
用于进行非数值的变量,其实就是未知数x,y等来参与计算,他们并没有实际数值

4.求导法则
https://baike.baidu.com/item/%E5%AF%BC%E6%95%B0%E8%A1%A8/10889755?fr=aladdin
在这里插入图片描述
在这里插入图片描述
5.费马定理(导数应用)—利用倒数寻找极值
核心:极值处,导数为0
导数为0处,未必有极值(如fx=x^3)

6.函数逼近–有点类似于等价无穷小,本质还是导数和近似
https://zhuanlan.zhihu.com/p/67806247

7.泰勒展开
在这里插入图片描述
8.洛必达法则-https://baike.baidu.com/item/%E6%B4%9B%E5%BF%85%E8%BE%BE%E6%B3%95%E5%88%99/7646700?fr=aladdin
求极限,分不同类型,注意结合等价无穷小
在这里插入图片描述
在这里插入图片描述
9.凸函数—优化概念
凸函数是一个定义在某个向量空间的凸子集C上的实值函数f,而且对于凸子集C中任意两个向量x1,x2,有在这里插入图片描述
判断条件:二阶导数:
在这里插入图片描述
拉格朗日中值定理:
若函数f(x)在区间[a,b]满足以下条件:

(1)在[a,b]连续

(2)在(a,b)可导

则在(a,b)中至少存在一点f’©=[f(b)-f(a)]/(b-a) a<c<b,使或f(b)-f(a)=f’©(b-a) 成立,其中a<c<b

微分下:

1.多元函数:
求极限:要看范围,。而不是某个方向,引入k进行计算,如果花间的极限和k无关,则说明在各个方向上都有极限
在这里插入图片描述
2.偏导数–求多元函数极值
在这里插入图片描述
3.方向导数
在函数定义域的内点,对某一方向求导得到的导数。一般为二元函数和三元函数的方向导数,方向导数可分为沿直线方向和沿曲线方向的方向导数。
在这里插入图片描述
方向导数存在,偏导数也未必存在

4.可微
设函数y= f(x),若自变量在点x的改变量Δx与函数相应的改变量Δy有关系Δy=A×Δx+ο(Δx),其中A为不依赖Δx的常数,ο(Δx)是比Δx高阶的无穷小。则称函数f(x)在点x可微,并称AΔx为函数f(x)在点x的微分,记作dy,即dy=A×Δx,当x= x0时,则记作dy∣x=x0。

在这里插入图片描述
5.梯度
梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。
多元函数 的梯度实质上对应的是一元的导数
6.链式法则-多元函数
https://zhuanlan.zhihu.com/p/144625188

7.海森矩阵-判断多元函数是否取极值

8.拉格朗日数乘法—求多远的最优解–隐函数—参考高数资料
在数学最优问题中,拉格朗日乘数法(以数学家约瑟夫·路易斯·拉格朗日命名)是一种寻找变量受一个或多个条件所限制的多元函数的极值的方法。这种方法将一个有n 个变量与k 个约束条件的最优化问题转换为一个有n + k个变量的方程组的极值问题,其变量不受任何约束。这种方法引入了一种新的标量未知数,即拉格朗日乘数:约束方程的梯度(gradient)的线性组合里每个向量的系数。 [1] 此方法的证明牵涉到偏微分,全微分或链法,从而找到能让设出的隐函数的微分为零的未知数的值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值