一文读懂监督学习、无监督学习、半监督学习、强化学习四种方式

「机器人圈」导览:一般说来,训练深度学习网络的方式主要有四种:监督、无监督、半监督和强化学习。在接下来的文章中,机器人圈将逐个解释这些方法背后所蕴含的理论知识。除此之外,机器人圈将分享文献中经常碰到的术语,并提供与数学相关的更多资源。本文编译自硅谷著名的风险投资机构安德森霍洛维茨基金,作者是Frank Chen。有关数学相关问题,请参阅这个斯坦福大学的教程,其中包含监督和无监督学习,内含代码示例。

监督学习(Supervised Learning)

监督学习是使用已知正确答案的示例来训练网络的。想象一下,我们可以训练一个网络,让其从照片库中(其中包含你父母的照片)识别出你父母的照片。以下就是我们在这个假设场景中所要采取的步骤。

步骤1:数据集的创建和分类

首先,我们要浏览你的照片(数据集),确定所有有你父母的照片,并对其进行标注,从而开始此过程。然后我们将把整堆照片分成两堆。我们将使用第一堆来训练网络(训练数据),而通过第二堆来查看模型在选择我们父母照片操作上的准确程度(验证数据)。

等到数据集准备就绪后,我们就会将照片提供给模型。在数学上,我们的目标就是在深度网络中找到一个函数,这个函数的输入是一张照片,而当你的父母不在照片中时,其输出为0,否则输出为1。

此步骤通常称为分类任务(categorization task)。在这种情况下,我们进行的通常是一个结果为yes or no的训练,但事实是,监督学习也可以用于输出一组值,而不仅仅是0或1。例如,我们可以训练一个网络,用它来输出一个人偿还信用卡贷款的概率,那么在这种情况下,输出值就是0到100之间的任意值。这些任务我们称之为回归。

步骤2:训练

为了继续该过程,模型可通过以下规则(激活函数)对每张照片进行预测,从而决定是否点亮工作中的特定节点。这个模型每次从左到右在一个层上操作——现在我们将更复杂的网络忽略掉。当网络为网络中的每个节点计算好这一点后,我们将到达亮起(或未亮起)的最右边的节点(输出节点)。

既然我们已经知道有你父母的照片是哪些图片,那么我们就可以告诉模型它的预测是对还是错。然后我们会将这些信息反馈(feed back)给网络。

该算法使用的这种反馈,就是一个量化“真实答案与模型预测有多少偏差”的函数的结果。这个函数被称为成本函数(cost function),也称为目标函数(objective function),效用函数(utility function)或适应度函数(fitness function)。然后,该函数的结果用于修改一个称为反向传播(backpropagation)过程中节点之间的连接强度和偏差,因为信息从结果节点“向后”传播。

我们会为每个图片都重复一遍此操作,而在每种情况下,算法都在尽量最小化成本函数。

其实,我们有多种数学技术可以用来验证这个模型是正确还是错误的,但我们常用的是一个非常常见的方法,我们称之为梯度下降(gradient descent)。Algobeans上有一个 “门外汉”理论可以很好地解释它是如何工作的。迈克尔尼尔森(Michael Nielsen)用数学知识完善了这个方法,其中包括微积分和线性代数。

步骤3:验证

一旦我们处理了第一个堆栈中的所有照片,我们就应该准备去测试该模型。我们应充分利用好第二堆照片,并使用它们来验证训练有素的模型是否可以准确地挑选出含有你父母在内的照片。

我们通常会通过调整和模型相关的各种事物(超参数)来重复步骤2和3,诸如里面有多少个节点,有多少层,哪些数学函数用于决定节点是否亮起,如何在反向传播阶段积极有效地训练权值,等等。而你可以通过浏览Quora上的相关介绍来理解这一点,它会给你一个很好的解释。

步骤4:使用

最后,一旦你有了一个准确的模型,你就可以将该模型部署到你的应用程序中。你可以将模型定义为API调用,例如ParentsInPicture(photo),并且你可以从软件中调用该方法,从而导致模型进行推理并给出相应的结果。

稍后我们将详细介绍一下这个确切的过程,编写一个识别名片的iPhone应用程序。

得到一个标注好的数据集可能会很难(也就是很昂贵),所以你需要确保预测的价值能够证明获得标记数据的成本是值得的,并且我们首先要对模型进行训练。例如,获得可能患有癌症的人的标签X射线是非常昂贵的,但是获得产生少量假阳性和少量假阴性的准确模型的值,这种可能性显然是非常高的。

无监督学习(Unsupervised Learning)

无监督学习适用于你具有数据集但无标签的情况。无监督学习采用输入集,并尝试查找数据中的模式。比如,将其组织成群(聚类)或查找异常值(异常检测)。例如:

想像一下,如果你是一个T恤制造商,拥有一堆人的身体测量值。那么你可能就会想要有一个聚类算法,以便将这些测量组合成一组集群,从而决定你生产的XS,S,M,L和XL号衬衫该有多大。

如果你是一家安全初创企业的首席技术官(CTO),你希望找出计算机之间网络连接历史中的异常:网络流量看起来不正常,这可能会帮助你通过下载员工们的所有CRM历史记录来找到那名该为此事负责的员工,因为他们可能即将退出或有人正在将异常大量的钱转移到一个新的银行账户。如果你对这种事情感兴趣的话,那么我相信你会很喜欢这种对无监督异常检测算法的调查。

假设一下,你是Google Brain团队中的一员,你想知道YouTube视频中有什么。 谷歌通过人工智能在视频网站中找到猫的真实故事,唤起了大众对AI的热忱。在诸如这篇论文中,Google Brain团队与斯坦福大学研究人员Quoc Le和吴恩达一起描述了一种将YouTube视频分为多种类别的算法,其中一种包含了猫的类别。当然他们并没有真正开始寻找猫,但算法自动将包含猫的视频(以及ImageNet中定义的22000个对象类别中的数千个其他对象)组合在一起,而不需要任何明确的训练数据。

你将在文献中阅读到的一些无监督的学习技术包括:

自编码(Autoencoding)

主成分分析(Principal components analysis)

随机森林(Random forests)

K均值聚类(K-means clustering)

如果你想要了解有关无监督学习的更多信息,可以观看Udacity的课程。

无监督学习中最有前景的最新发展之一是Ian Goodfellow(当时在Yoshua Bengio的实验室工作时提出)的一个想法,称为“生成对抗网络(generative adversarial networks)”,其中我们将两个神经网络相互联系:一个网络,我们称之为生成器,负责生成旨在尝试欺骗另一个网络的数据,而这个网络,我们称为鉴别器。这种方法实现了一些令人惊奇的结果,例如可以从文本字符串或手绘草图生成如照片版逼真图片的AI技术。

半监督学习(Semi-supervised Learning)

半监督学习在训练阶段结合了大量未标记的数据和少量标签数据。与使用所有标签数据的模型相比,使用训练集的训练模型在训练时可以更为准确,而且训练成本更低。举个例子来说明,我们的朋友Delip Rao在AI咨询公司Joostware工作,他构建了一个使用半监督学习的解决方案,每个类中只需使用30个标签,就可以达到与使用监督学习训练的模型相同的准确度,而在这个监督学习模型中,每个类中需要1360个左右的标签。因此,这个半监督学习方案使得他们的客户能够非常快地将其预测功能从20个类别扩展到110个类别。

为什么使用未标记数据有时可以帮助模型更准确,关于这一点的体会就是:即使你不知道答案,但你也可以通过学习来知晓,有关可能的值是多少以及特定值出现的频率。

数学爱好者的福利:如果你对半监督学习很感兴趣的话,可以来阅读这个朱小津教授的幻灯片教程和2008年回顾的文献随笔文章。

强化学习(Reinforcement Learning)

强化学习是针对你再次没有标注数据集的情况而言的,但你还是有办法来区分是否越来越接近目标(回报函数(reward function))。经典的儿童游戏——“hotter or colder”。(Huckle Buckle Beanstalk的一个变体)是这个概念的一个很好的例证。你的任务是找到一个隐藏的目标物件,然后你的朋友会喊出你是否越来越hotter(更接近)或colder(远离)目标物件。“Hotter/colder”就是回报函数,而算法的目标就是最大化回报函数。你可以把回报函数当做是一种延迟和稀疏的标签数据形式:而不是在每个数据点中获得特定的“right/wrong”答案,你会得到一个延迟的反应,而它只会提示你是否在朝着目标方向前进。

DeepMind在Nature上发表了一篇文章,描述了一个将强化学习与深度学习结合起来的系统,该系统学会该如何去玩一套Atari视频游戏,一些取得了巨大成功(如Breakout),而另一些就没那么幸运了(如Montezuma’s Revenge(蒙特祖玛的复仇))。

Nervana团队(现在在英特尔)发表了一个很好的解惑性博客文章,对这些技术进行了详细介绍,大家有兴趣可以阅读一番。

Russell Kaplan,Christopher Sauer和Alexander Sosa举办的一个非常有创意的斯坦福学生项目说明了强化学习的挑战之一,并提出了一个聪明的解决方案。正如你在DeepMind论文中看到的那样,算法未能学习如何去玩Montezuma’s Revenge。其原因是什么呢?正如斯坦福大学生所描述的那样,“在稀缺回报函数的环境中,强化学习agent仍然在努力学习”。当你没有得到足够的“hotter”或者“colder”的提示时,你是很难找到隐藏的“钥匙”的。斯坦福大学的学生基础性地教导系统去了解和回应自然语言提示,例如“climb down the ladder”或“get the key”,从而使该系统成为OpenAI gym中的最高评分算法。可以点击算法视频观看算法演示。

观看这个关于强化学习的算法,好好学习,然后像一个大boss一样去玩超级马里奥吧。

理查德萨顿和安德鲁巴托写了关于强化学习的书。你也可以点击查看第二版草稿。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
无监督对比学习是一种用于训练深度神经网络的自监督学习方法,它在没有标签的大规模未标记数据上进行训练。该方法通过使模型学习将相似样本聚集在一起,将不相似样本分开来,从而学习到有用的特征表示。 以下是几种常见的无监督对比学习方法: 1. MoCo(Momentum Contrast):MoCo是一种基于对比学习的方法,它使用了动量更新策略来增强对比学习的性能。它通过构建一个动态的字典来扩展正样本的数量,并使用动量更新策略来提高特征的一致性。 2. SimCLR(Simple Contrastive Learning):SimCLR是一种简单而有效的对比学习方法,它通过最大化正样本间的相似性并最小化负样本间的相似性来进行训练。SimCLR使用了数据增强和大批量训练等技术来提高性能。 3. SwAV(Swapping Assignments between Views):SwAV是一种基于视图交换的对比学习方法,它通过交换不同视图下的样本分配来增强对比学习过程。SwAV还使用了聚类损失来进一步优化特征表示。 4. BYOL(Bootstrap Your Own Latent):BYOL是一种基于自举的对比学习方法,它通过预测一个网络的自我编码器输出来进行训练。BYOL使用了移动平均权重和在线网络更新等技术来提高性能。 5. SimSiam(Simplified Siamese):SimSiam是一种简化的孪生网络对比学习方法,它通过最大化网络预测的一致性来进行训练。相比于传统的对比学习方法,SimSiam省略了负样本的构造过程,简化了训练过程。 这些无监督对比学习方法在图像和自然语言处理等领域都取得了很好的效果,并且被广泛应用于预训练模型的训练中。每种方法都有其独特的特点和优势,可以根据具体任务和数据集选择适合的方法进行使用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值