这周找了还是找了一道dp
题目大概意思是2xN的铺瓷砖
有两种瓷砖
一种是
XX
一种是
Y
YY
问给定一个N,有多少种铺法
假设现在N为3的话,铺法等于
XX
X
+
X
XX
+
XX
XX
+
X
X
这四种铺法的和
将3推广为N即可,不过还要维持一下
XX
XXX
和
XXX
XX 的铺法
class Solution {
public:
int numTilings(int N) {
int m = 1000000000+7;
unsigned long long dp[1010][1010];
for(int i=0;i<N+2;i++)
for(int q=0;q<N+2;q++)
dp[i][q]=0;
dp[1][1]=1;
dp[1][2]=1;
dp[2][1]=1;
dp[2][0]=1;
dp[0][2]=1;
dp[2][2]=2;
for(int i=3;i<=N;i++)
{
dp[i][i]+=dp[i-2][i-2];
dp[i][i]%=m;
dp[i][i]+=dp[i-1][i-1];
dp[i][i]%=m;
dp[i][i]+=dp[i-2][i-1];
dp[i][i]%=m;
dp[i][i]+=dp[i-1][i-2];
dp[i][i]%=m;
dp[i-1][i]+=dp[i-1][i-2];
dp[i-1][i]%=m;
dp[i-1][i]+=dp[i-2][i-2];
dp[i-1][i]%=m;
dp[i][i-1]+=dp[i-2][i-1];
dp[i][i-1]%=m;
dp[i][i-1]+=dp[i-2][i-2];
dp[i][i-1]%=m;
}
//printf("%d\n",dp[2][2]);
return dp[N][N]%m;
}
};