Capacitated Facility Location Problem
问题描述
Suppose there are n facilities and m customers. We wish to choose:
- which of the n facilities to open
- the assignment of customers to facilities
- The objective is to minimize the sum of the opening cost and the assignment cost.
- The total demand assigned to a facility must not exceed its capacity
问题建模
设集合 I I I = { 1, … , m } 是所有Facilities
集合 J J J = { 1, …, n } 是所有Customers
对于每个Customer 都有一个 demand, d j d_j dj,只能被一个facility提供
对于每个Facility 都有一个 capacity, b i b_i bi,是该facility最多能提供的容量
对于每个Facility 都有一个 fixed cost, f i f_i fi,当该facility开启的时候固定的开销
定义 c i j c_{ij} cij 是facility j j j满足 customer i i i 的要求的开销
对于每个facility i ∈ I i \in I i∈I,定义变量 y i y_i yi
y i = { 1 如 果 f a c i l i t y i 开 启 0 如 果 f a c i l i t y i 关 闭 y_i = \begin{cases} 1 & 如果facility & i开启 \\ 0 & 如果facility & i关闭 \end{cases} yi={ 10如果facility如果facilityi开启i关闭
对于每个facility i ∈ I i \in I i∈I,每个customer j ∈ J j \in J j∈J, 定义变量 x i j x_{ij} xij
x i j = { 1 如 果 c u s t o m e r i 被 f a c i l i t y j 服 务 0 否 则 x_{ij} = \begin{cases} 1 & 如果customer&i 被facility&j服务\\ 0 & 否则 \end{cases} xij={ 10如果customer否则i被facilityj服务
对于Single Source Capacitated Facility Location Problemk可以描述为如下
(1) min ∑ i ∈ I ∑ j ∈ J c i j x i j + ∑ i ∈ I f i y i \min \sum_{i \in I} \sum_{j \in J} c_{ij}x_{ij} + \sum_{i \in I}f_iy_i \tag1 mini∈I∑j∈J∑cijxij+i∈I∑f