Capacitated Facility Location Problem
问题描述
Suppose there are n facilities and m customers. We wish to choose:
- which of the n facilities to open
- the assignment of customers to facilities
- The objective is to minimize the sum of the opening cost and the assignment cost.
- The total demand assigned to a facility must not exceed its capacity
问题建模
设集合 III = { 1, … , m } 是所有Facilities
集合 JJJ = { 1, …, n } 是所有Customers
对于每个Customer 都有一个 demand, djd_jdj,只能被一个facility提供
对于每个Facility 都有一个 capacity, bib_ibi,是该facility最多能提供的容量
对于每个Facility 都有一个 fixed cost, fif_ifi,当该facility开启的时候固定的开销
定义 cijc_{ij}cij 是facility jjj满足 customer iii 的要求的开销
对于每个facility i∈Ii \in Ii∈I,定义变量 yiy_iyi
yi={ 1如果facilityi开启0如果facilityi关闭y_i = \begin{cases} 1 & 如果facility & i开启 \\ 0 & 如果facility & i关闭 \end{cases}yi={ 10如果facility如果facilityi开启i关闭
对于每个facility i∈Ii \in Ii∈I,每个customer j∈Jj \in Jj∈J, 定义变量 xijx_{ij}xij
xij={ 1如果customeri被facilityj服务0否则x_{ij} = \begin{cases} 1 & 如果customer&i 被facility&j服务\\ 0 & 否则 \end{cases}xij={ 10如果customer否则i被facilityj服务
对于Single Source Capacitated Facility Location Problemk可以描述为如下
(1)min∑i∈I∑j∈Jcijxij+∑i∈Ifiyi\min \sum_{i \in I} \sum_{j \in J} c_{ij}x_{ij} + \sum_{i \in I}f_iy_i \tag1mini∈I∑j∈J∑cijxij+i∈I∑fiyi(1)
(2)∑i∈Ixij=1∀j∈J\sum_{i \in I}x_{ij} = 1\quad\forall j \in J \tag2i∈I∑xij=1∀j∈J(2)
(3)∑j∈Jdjxij≤biyi∀i∈I\sum_{j \in J}d_jx_{ij}\leq b_iy_i\quad\forall i \in I \tag3

本文介绍了Capacitated Facility Location Problem的问题描述、建模,并通过贪心算法和禁忌搜索两种方法进行求解。贪心算法策略是按customer成本排序并分配,而禁忌搜索则采用启发式搜索策略,包括初始解获取、移动领域、禁忌表长度、停止准则和禁忌破除等步骤。每种方法都有相应的代码实现和结果展示。
最低0.47元/天 解锁文章
2440

被折叠的 条评论
为什么被折叠?



