自己学习总结
决策树的生成过程主要利用信息增益或者信息增益比进行特征选择,然后依次进行节点的选择,直到全部的叶子节点全部分配完成。
本文将介绍常见的决策树生成算法:ID3算法C4.5算法。
其实ID3算法和C4.5算法原理都很简单。
只要懂得怎么利用信息增益或者信息增益比进行特征选择,那么ID3算法和C4.5算法就会很轻松。
- ID3算法主要是在每一个子集中利用信息增益进行特征选择,然后在进行节点的类划分;
- C4.5算法主要是把ID3算法中的信息增益换成信息增益比,因为利用信息增益有一个问题,那就是某一个类的样本量越多,其信息增益就会越大,所以在其中利用信息增益比进行消去样本量的影响。
具体算法:
ID3算法
ID3算法的基本思想是, 以信息熵为度量, 用于决策树节点的属性选择, 每次优先选取信息量最多的属性, 亦即能使熵值变为最小的属性, 以构造一颗熵值下降最快的决策树, 到叶子节点处的熵值为0。 此时, 每个叶子节点对应的实例集中的实例属于同一类。
C4.5算法
注:本文的内容只是自己学习过程的一个总结,根据自己的学习感悟进行总结,以便自己日后好复习巩固,如有不对之处,敬请谅解,感谢李航老师的书籍和袁春老师的课件,让我学习到很多知识。
参考文献:
- 统计学习方法 [M]. 李航,
- 统计学习方法课件,袁春.