1. Python的标准库:
datetime:为日期和时间的处理提供了简单和复杂的方法。
zlib:以下模块直接支持通用的数据打包和压缩格式:zlib,gzip,bz2,zipfile和 tarfile。
random:提供了生成随机数的工具。
math:为浮点运算提供了对底层C函数库的访问。
sys:工具脚本经常调用的命令行参数。这些命令行参数以链表形式存储于 sys 模块的 argv 变量。
glob:提供了一个函数,用于从目录通配符搜索中生成文件列表。
os:提供了许多与操作系统相关联的函数。
re:为高级字符串处理提供了正则表达式工具。
1.1 math库中常用的数学函数:
圆周率pi:π的近似值,15位小数。
自然数e:e的近似值,15位小数。
ceil(x):对浮点数向上取整。
floor(x):对浮点数向下取整。
pow(x,y):计算x的y次方。
log(x):以e为基的对数。
log10(x):以10为基的对数。
sqrt(x):平方根。
exp(x):e的x次幂。
degrees(x):将弧度值转换成角度。
radians(x) :将角度值转换位弧度值。
sin(x):正弦函数。
cos(x):余弦函数。
tan(x):正切函数。
asin(x):反正弦函数。
acos(x):反余弦函数。
atan(x):反正切函数。
1.2 random库中常用的函数:
seed(x):给随机数一个种子值seed(x),如果使用相同的seed(x)(即相同的种子值),则每次生成的随机数相同,如果不设置seed()值,则默认随机种子是系统时钟,系统根据时间来自己选择这个值,此时每次生成的随机数因时间差异而不同。也可以说,seed的作用是让随机结果可重现。
random():生成一个[0,1.0)之间的随机小数。
uniform(a,b):生成一个a到b之间的随机小数。
randint(a,b):生成一个a到b之间的随机整数。
randrange(a,b,c):随机生成一个从a到b以c递增的数。
choice(< lsit >):从列表中随机返回一个元素。
shuffle(< list > ):将列表中的元素随机打乱。
sample(< list >, k):从指定列表随机获取k个元素。
2. Python常用的第三方库:
分类 工具名 用途
数据收集 scrapy 网页采集,爬虫
数据收集 scrapy-redis 分布式爬虫
数据收集 selenium web测试,仿真浏览器
数据处理 beautifulsoup 网页解释库,提供lxml的支持
数据处理 lxml xml解释库
数据处理 xlrd excel文件读取
数据处理 xlwt excel文件写入
数据处理 xlutils excel文件简单格式修改
数据处理 pywin32 excel文件的读取写入及复杂格式定制
数据处理 Python-docx Word文件的读取写入
数据分析 numpy 基于矩阵的数学计算库
数据分析 pandas 基于表格的统计分析库
数据分析 scipy 科学计算库,支持高阶抽象和复杂模型
数据分析 statsmodels 统计建模和计量经济学工具包
数据分析 scikit-learn 机器学习工具库
数据分析 gensim 自然语言处理工具库
数据分析 jieba 中文分词工具库
数据存储 MySQL-python mysql的读写接口库
数据存储 mysqlclient mysql的读写接口库
数据存储 SQLAlchemy 数据库的ORM封装
数据存储 pymssql sql server读写接口库
数据存储 redis redis的读写接口
数据存储 PyMongo mongodb的读写接口
数据呈现 matplotlib 流行的数据可视化库
数据呈现 seaborn 美观的数据可是湖库,基于matplotlib
工具辅助 jupyter 基于web的python IDE,常用于数据分析
工具辅助 chardet 字符检查工具
工具辅助 ConfigParser 配置文件读写支持
工具辅助 requests HTTP库,用于网络访问