1. 使用方法
手机上使用:安装”通义APP“,在”工具“页面的搜索栏搜索”AI制药知识库“
电脑浏览器:AI制药知识-通义千问
2. 使用效果
👨:ADMET预测进展如何?
🤖:ADMET(吸收、分布、代谢、消除和毒性)预测是药物发现过程中的一个重要组成部分,旨在早期识别潜在药物分子的有效性和安全性。近年来,随着人工智能(AI)和机器学习(ML)技术的发展,ADMET预测领域取得了显著进展。以下是一些关键进展:
-
多任务学习:研究者们采用了多任务学习策略,即同时训练模型预测多个相关属性,以提高药物候选物的ADMET属性预测准确性。这种方法通过共享底层特征表示,能够从不同任务之间的关联中获益,从而获得更好的泛化性能。
-
深度学习和图卷积网络:利用深度学习技术,特别是图卷积网络(GCNs),研究人员能够更加准确地建模分子结构及其ADMET性质之间的关系。这些技术不仅提高了预测精度,还能够处理更为复杂的分子结构。
-
数据驱动的预测模型:制药公司如默克等正在利用其庞大的内部数据库,结合假设驱动和模型导向的方法来指导早期实验设计。这有助于减少实验成本和时间,加速药物发现过程。
-
AI成药性预测平台:市场上已经出现了一些专门针对ADMET性质预测的AI平台,如药智网与上海交通大学、天鹜科技合作开发的AI成药性预测平台。这些平台通常具有强大的预测能力和用户友好的界面,能够帮助科研人员更高效地进行药物设计。
-
国际制药公司的实践:例如,拜耳制药在过去二十年间致力于构建一个ADMET计算平台,用于早期药物发现阶段的药代动力学和理化性质预测。这类平台在创新先导化合物的选择和优化过程中发挥了重要作用。