Leetcode上有五道旋转排序数组的题目,都是使用二分法。使用二分法的关键点是想到这样一个事实:每次二分,左半边和右半边肯定有一边是能确定有序的。利用这个性质来缩小待查区间。
首先要确定,nums[mid] 究竟和 nums[left] 以及 nums[right] 中的哪一个比较,可以把目标值套在一个可确定的区间里。
1. 找最小值问题
如果是找最小值,那么应当使得每次收缩区间,最小值仍然在区间内。 nums[mid] nums[left] 和 nums[right] 的比较可能有以下三种结果:以下左边指[left, mid], 右边指[mid, right],都是闭区间。
(1) 左 < 中, 中 < 右,那么 [左,右] 有序,最小值在左半边。
(2) 左 < 中, 中 > 右,如 2 3 4 0 1,左边可以确定有序,最小值在右半边。
(3) 左 > 中, 中 < 右,如 4 0 1 2 3,右边可以确定有序,最小值在左半边。
那么可以看出来,左和中的比较结果不能确定最小值落在哪边,如 (1)和(2),但是右和中的比较结果可以确定最小值在哪边。所以,找最小值应当将中和右进行比较。
1.1.153. 寻找旋转排序数组中的最小值
假设按照升序排序的数组在预先未知的某个点上进行了旋转。
( 例如,数组 [0,1,2,4,5,6,7] 可能变为 [4,5,6,7,0,1,2] )。
请找出其中最小的元素。
你可以假设数组中不存在重复元素。
示例 1:
输入: [3,4,5,1,2]
输出: 1
示例 2:输入: [4,5,6,7,0,1,2]
输出: 0
如上所述,中与右比较,缩小最小值所在的区间。最后区间长度为1时就是最小值。
class Solution {
public:
int findMin(vector<int>& nums) {
int left = 0, right = nums.size() - 1;
while(left < right)
{
int mid = left + (right - left) / 2;
//最小值在右半边
if(nums[mid] > nums[right]) left = mid + 1;
//最小值在左半边
else right = mid;
}
return nums[right];
}
};
1.2. 154. 寻找旋转排序数组中的最小值 II
假设按照升序排序的数组在预先未知的某个点上进行了旋转。
( 例如,数组 [0,1,2,4,5,6,7] 可能变为 [4,5,6,7,0,1,2] )。
请找