Codeforces Round #483 (Div. 2) C, D

C. Finite or not?
题意:判断p*b^k/q,k的取值任意时能否整除
思路:即判断分母的素因子分解是否包含了分子的素因子分解。
由于1e18的数据,无法在有限时间内分解,故采用除gcd的方法。
除法时,无需每次gcd(b,q),每次令b = gcd(b,q)
#include <bits/stdc++.h>

using namespace std;
typedef long long ll;
const int maxn = 100005;

ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a % b); }

int main() {
    ll p, q, b;
    int t;
    scanf("%d", &t);
    while(t--) {
        scanf("%lld%lld%lld", &p, &q, &b);
        ll g = gcd(p, q);
        p /= g, q /= g;
        b = gcd(q, b);
        while(b != 1) {
            while(q % b == 0) q /= b;
            b = gcd(q, b);
        }
        puts(q == 1 ? "Finite" : "Infinite");
    }
    return 0;
}
D. XOR-pyramid
线性结构上的动态规划,d(l, r) = max({f(l, r), d(l+1, r), d(l, r-1)})
f(l, r) = f(l, r - 1)^f(l + 1, r)
#include <bits/stdc++.h>

using namespace std;
typedef long long ll;
const int maxn = 5005;
int b[maxn];
int f[maxn][maxn];
int d[maxn][maxn];

int main() {
    int n;
    while(scanf("%d", &n) == 1) {
        for(int i = 0; i < n; ++i) {
            scanf("%d", &b[i]);
            f[i][i] = b[i];
            d[i][i] = b[i];
        }
        for(int i = 1; i < n; ++i) {
            for(int l = 0; l < n - i; ++l) {
                int r = l + i;
                f[l][r] = f[l][r-1]^f[l+1][r];
                //printf("f[%d][%d] = %d\n", l, r, f[l][r]);
            }
        }
        for(int i = 1; i < n; ++i) {
            for(int l = 0; l < n - i; ++l) {
                int r = l + i;
                d[l][r] = max({f[l][r], d[l][r - 1], d[l + 1][r]});
            }
        }
        int q;
        scanf("%d", &q);
        while(q--) {
            int l, r;
            scanf("%d%d", &l, &r);
            printf("%d\n", d[l-1][r-1]);
        }
    }
    return 0;
}


阅读更多
个人分类: Codeforces
上一篇UVA 1395 Slim Span (Kruskal + 尺取法)
下一篇Educational Codeforces Round 44 D, E
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭