✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
(1)基于代价敏感半监督深度学习的自动驾驶风险预测方法
自动驾驶技术作为汽车领域的关键变革方向,其预测模块在整个自动驾驶算法流程中占据重要地位。它能将环境感知信息进行高层次处理,为决策和规划模块提供关键支持,特别是对周围智能体未来状态的预测。深度神经网络助力下,自动驾驶汽车在预测周围智能体运动轨迹、行为意图和风险水平方面有了高精度的能力。当前,深度学习预测方法虽在准确率和泛化性上超越了传统方法,成为研究热点,但在复杂交通场景下仍面临诸多挑战。例如多源异构输入的噪声处理、数据特征提取与语义融合,以及多预测任务间的语义信息共享等问题。而且随着自动驾驶商业化,深度神经网络的可解释性问题愈发受到关注,挖掘智能体意图 - 行为 - 运动模式成为预测任务的瓶颈。
在自动驾驶风险预测中,标签缺乏和类别不均衡是严重问题。为解决这些问题,提出基于代价敏感半监督深度学习的方法。此方法将 CNN - LSTM 模型嵌入半监督学习框架。CNN - LSTM 模型结合了卷积神经网络(CNN)在处理图像等数据时的特征提取优势和长短期记忆网络(LSTM)对序列数据的处理能力。在这个半监督学习框架中,使用自适应过均衡交叉熵损失函数实现成本敏感学习。这种损失函数具有重要意义,它能根据每个风险类别实例数量的变化,自动调整各类别的交叉熵权重。
在实际数据应用中,即使仅使用总数据标注量的 5% 和 2.5%,当前时刻风险预测准确率分别达到 96.63% 和 95.82%。这一成果对于自动驾驶汽车数据处理意义重大,因为自动驾驶汽车会产生海量无标签数据,此方法能降低模型训练成本和数据标注工作量。而且通过提高高风险类的精确率与召回率,能更好地应对高风险情况,保障自动驾驶汽车在复杂交通场景下对风险的准确评估和应对,为后续的决策和规划提供更可靠的依据,避免因风险预测不准确导致的安全问题。
(2)不确定性抑制的自动驾驶行为与轨迹预测及其解释方法
复杂的交通环境中,噪声和不确定性对自动驾驶预测输入有着严重影响,同时模型的可解释性也是需要重点关注的问题。为应对这些问题,提出了不确定性抑制的自动驾驶行为与轨迹预测及其解释方法。
在抑制不确定性方面,采用了时间模式注意力和图卷积序列编码。时间模式注意力机制能够聚焦于不同时间点上的关键信息,在处理自动驾驶汽车周围智能体的行为和轨迹数据时,可以从时间维度上筛选出对预测有重要意义的信息,从而抑制低级感知噪声和因感知缺失等导致的异方差不确定性。图卷积序列编码则利用图结构来处理智能体之间的关系,将智能体视为图中的节点,它们之间的相互关系作为边,通过图卷积操作,更好地整合多智能体信息,进一步抑制不确定性。同时构建自适应权重损失函数来处理多任务模型引入的同方差不确定性。多任务模型在同时处理行为和轨迹预测等任务时,可能会因为任务之间的差异和相互影响产生不确定性,自适应权重损失函数能够根据不同任务的特点和当前的预测情况,动态调整权重,减少这种不确定性。
实验结果表明,所提方法的预测性能相较于其他对比模型有显著提高,提高幅度在 20% 以上,并且在抑制不确定性方面表现出色。此外,为了证明时间模式注意力具有高级意图 - 行为模式的提取能力,采用基于扰动输入的被动模型解释法。以高速公路场景下的车辆换道行为为例,通过详细的统计分析发现,时间模式注意力可以精准地提取出车辆换道过程中 “驾驶意图 - 换道行为 - 车辆运动” 对应的 3 个时间节点。这表明神经网络能够深入理解智能体的行为模式,从复杂的交通场景数据中挖掘出高级 “意图 - 行为 - 运动” 模式,这不仅提高了预测的准确性,还增强了模型的可解释性,使得自动驾驶系统的决策过程更加透明,有助于提升用户对自动驾驶技术的信任。
(3)多源信息融合下多模态行为与轨迹预测方法及多预测任务一体化实现
在复杂的交通场景中,自动驾驶汽车面临多源异构输入统一表征和多源信息有机融合的难题,同时还要提高模型的可解释性。针对这些问题,提出了多源信息融合下多模态行为与轨迹预测方法以及多预测任务一体化实现及其解释方法。
对于多源信息融合下的多模态行为与轨迹预测,构建了 Holistic Transformer 神经网络模型。这个模型设计了三种不同的注意力机制。第一种注意力机制专注于从多源异构数据中提取关键特征,比如从图像数据、雷达数据等不同来源的数据中挖掘出对行为和轨迹预测有价值的信息。第二种注意力机制用于处理多模态信息之间的关系,将不同模态的数据进行有机融合,使模型能够理解不同模态信息之间的相互作用和关联。第三种注意力机制则是在时间维度上对多模态融合后的信息进行动态处理,随着时间的推移,根据交通场景的变化调整对不同信息的关注程度。通过这三种注意力机制的协同作用,Holistic Transformer 神经网络模型显著提高了多模态行为与轨迹预测的性能。在实验对比中,Holistic Transformer 在各对比模型上综合预测性能表现最佳。
为了进一步展示模型的可解释性,对车道线意图权重进行了可视化。以换道、转向等智能体行为为例,随着智能体行为的推进,可以清晰地看到其对车道线的关注程度逐渐从当前车道变更为目标车道。这种可视化结果与人类的直观感觉相近,充分证明了车道线意图注意力具有较高的可信度。这意味着模型在处理交通场景信息时的逻辑与人类驾驶员的认知有相似之处,进一步增强了模型的可解释性,让开发者和用户更容易理解模型的决策过程。
在多预测任务一体化实现方面,以 Holistic Transformer 为骨干网络,同时考虑风险预测和行为预测任务。借助风险、行为预测额外输入,构建了风险预测与行为预测分支网络。在多任务网络框架设计上,提出 “各任务网络流程为主,高级语义信息共享为辅” 的思路。这种总分式方法在训练过程中表现出明显优势。相对于传统的多任务网络框架,它能更好地平衡各个任务之间的关系,避免任务之间的相互干扰,同时实现高级语义信息的有效共享。
此外,为了更好地解释模型,推导出基于信息瓶颈限制的被动解释法,并在特征、时间与空间维度上进行分析。在特征维度上,发现智能体横、纵向行为的预测主要依据智能体自身的横、纵向加速度。这表明在模型决策过程中,智能体自身的运动状态变化信息是关键因素。在空间维度上,智能体横、纵向行为的预测主要依据目标智能体自身的特征预测,其次才是通过相邻智能体的交互信息预测。这说明模型在考虑空间关系时,以目标智能体自身特性为主要依据,同时兼顾周围环境的影响。在时间维度上,以换道行为为例,发现智能体跨越车道线前存在 3 个高重要性的时间节点。这些分析结果从多个维度深入剖析了模型的决策过程,提高了模型的可解释性,为自动驾驶汽车预测任务提供了更全面、更深入的理解。
data_annotated = [(input_data1, label1), (input_data2, label2),...] # 标注数据
data_unannotated = [input_data3, input_data4,...] # 未标注数据
# 定义 CNN - LSTM 模型结构
class CNN_LSTM_Model(nn.Module):
def __init__(self):
super(CNN_LSTM_Model, self).__init__()
# 这里定义卷积层、LSTM 层等模型结构细节
self.conv_layers =...
self.lstm_layer =...
self.fc_layer =...
def forward(self, x):
x = self.conv_layers(x)
x = self.lstm_layer(x)
x = self.fc_layer(x)
return x
# 定义自适应过均衡交叉熵损失函数
def adaptive_oversampling_cross_entropy_loss(logits, labels, class_counts):
num_classes = len(class_counts)
weights = []
total_count = sum(class_counts)
for count in class_counts:
# 根据类别数量自适应计算权重
weight = total_count / (num_classes * count)
weights.append(weight)
weights = torch.FloatTensor(weights).to(logits.device)
loss_function = nn.CrossEntropyLoss(weight=weights)
return loss_function(logits, labels)
# 训练函数
def train_model():
model = CNN_LSTM_Model()
optimizer = optim.Adam(model.parameters())
# 训练轮数
num_epochs = 10
for epoch in range(num_epochs):
# 混合标注和未标注数据(这里只是简单模拟,实际可能有更复杂的采样策略)
combined_data = data_annotated + [(data, None) for data in data_unannotated]
random.shuffle(combined_data)
for data_point in combined_data:
if data_point[1] is not None: # 标注数据
input_data, label = data_point
optimizer.zero_grad()
output = model(input_data)
loss = adaptive_oversampling_cross_entropy_loss(output, label, get_class_counts(data_annotated))
loss.backward()
optimizer.step()
else:
continue
if __name__ == "__main__":
train_model()
如有问题,可以直接沟通
👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇

被折叠的 条评论
为什么被折叠?



