7、Knative Revisions:深入解析与实践指南

Knative Revisions:深入解析与实践指南

在云计算和容器化技术的领域中,Knative 作为一个关键的开源项目,为开发者提供了简化的无服务器计算体验。其中,Revisions 扮演着极其重要的角色。本文将深入探讨 Knative Revisions 的各个方面,包括其基本概念、容器相关设置以及命令执行等内容。

1. 配置与修订的关系

配置(Configurations)的主要任务是生成修订(Revisions)。在配置和修订之间,存在着父/子、模板/渲染的关系。在实际操作中,我们看到的 YAML 文件有些来自修订,而很多则来自配置。

2. Kubernetes 事件系统的注意事项

Kubernetes 事件系统有两个需要注意的地方:
- 可选机制 :运行在 Kubernetes 上或扩展 Kubernetes 的软件没有义务向 Kubernetes 发送事件,很多软件的事件部分可能为空。不过,Knative Serving 会发送有意义的事件供 Kubernetes 记录和显示。
- 事件存储问题 :即使软件与 Kubernetes 事件系统配合良好,也不能保证所有事件都会被捕获、存储或长期保留,甚至可能被删除。因此,事件的存在意味着所描述的事件确实发生了,但事件的缺失不能作为判断依据。

3. Revision 与 Kubernetes Pod 的比较

对于有 Kubernetes 背景的人来说,可能会疑惑为什么 Revision 看起来很像 Kubernetes Pod。这是因为 Knative Ser

先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值