
论文学习记录
文章平均质量分 79
cheese0_0
在校学生,学习中。
展开
-
论文学习记录20200724:隐私保护机器学习[PETS2018]
SecureNN: 3-Party Secure Computation for Neural Network Training论文在这种三个服务器的设置下,为神经网络中一些常用函数建立了特定的算法协议,像矩阵乘法,激活函数,最大池化函数这些。我们之前读过的论文中处理这些神经网络中的函数大多会使用同态加密、混淆电路、不经意传输这些,但是这篇论文都没有用到,只是通过三方安全计算的方法,用加法秘密共享进行计算,没有用到什么特别的密码学的技术三个方面突破第一点就是准确率的提高。他们的技术能够在MNIST数原创 2020-07-24 17:31:35 · 1558 阅读 · 0 评论 -
论文学习记录20200619:隐私保护机器学习[TIFS2017]
Privacy-Preserving Deep Learning via Additively Homomorphic Encryption这篇论文结构比较明了,也挺简单的,它只针对机器学习中的一个算法进行隐私保护,就是异步随机梯度下降算法,也只用了一种密码学技术,加法同态加密。论文提出了一个新的深度学习系统,使用加法同态加密来保护诚实但好奇的云服务器上的梯度。之前的secagg其实也算是对梯度的隐私保护,那篇论文主要是通过添加掩码最后消除的方法,额外用了秘密共享、认证加密等密码学工具。这篇论文只用原创 2020-06-28 11:42:58 · 1868 阅读 · 3 评论 -
论文学习记录20200612:隐私保护神经网络推理[USENIX2018]
GAZELLE: A Low Latency Framework for Secure Neural Network Inference这篇论文是上周那篇的standing point,也是对神经网络推理的隐私保护Gazelle是一个可扩展的低延迟安全神经网络推理系统,它使用了同态加密和传统的两方计算技术(在论文中具体指的混淆电路),它是把这两者进行结合,混合起来使用。之前的工作一般都是要么是同态,要么是安全多方计算(像秘密共享、混淆电路这些),这种混合起来使用是一个创新。在神经网络推理系统中,有原创 2020-06-28 11:29:11 · 4266 阅读 · 7 评论 -
论文学习记录20200605:隐私保护神经网络推理[USENIX2020]
DELPHI: A Cryptographic Inference Service for Neural NetworksDELPHI是一个安全的神经网络预测系统。背景 :许多公司为用户提供神经网络预测服务,比如说,家庭监控系统,使用专有的神经网络对客户家中的监控视频中的对象进行分类,例如停在用户家附近的汽车,或访客的人脸。但是,当前的预测系统损害了用户和公司中其中一方的隐私:要么用户必须将敏感输入发送给服务提供商进行分类,损害了用户的个人隐私。要么服务提供商必须将其专有的神经网络存储在用户的设备上原创 2020-06-28 11:18:26 · 2116 阅读 · 0 评论 -
论文学习记录20200424:可验证函数加密[ASIACRYPT2016]
这篇论文讲的是可验证的函数加密,这个可验证,验证的是密文是否由公钥正确加密,私钥是否是由函数f(特定函数)和主密钥正确生成,在这个方案中,任何阶段任何参与方都可以是恶意的,也就是可信方也不可信了。首先先简单看一下函数加密。首先,会在初始化阶段生成公钥pk和msk,这一阶段通常是由可信方完成的,就像我下面画的这个。接下来,加密者会使用公钥对消息x进行加密,在这图中是上传给云。云想进行操作的话,会给可信方发送相应的函数,然后得到私钥sk,使用私钥sk对秘闻解密得到y,也就是f(x),这个能够保证如果.原创 2020-05-15 15:45:50 · 1709 阅读 · 1 评论 -
论文学习记录20200508:隐私保护机器学习[ccs2019]
QUOTIENT: Two-Party Secure Neural Network Training and Prediction最近,有大量的工作致力于为机器学习任务设计安全协议。其中大部分是为了实现高精度深层神经网络(DNNs)的安全预测。然而,由于dnn是基于数据进行训练的,一个关键问题是如何安全地训练这些模型。以前关于安全DNN训练的工作很少,主要集中在为现有训练算法设计自定义协议,或者开发定制的训练算法,然后应用通用的安全协议。在这项工作中,作者研究了在设计新的安全协议的同时设计训练算法的.原创 2020-05-15 15:32:08 · 1630 阅读 · 1 评论 -
论文学习记录20200515:安全多方计算综述[S&P2019]
这篇综述主要就是调查了十一个安全多方计算的框架,进行了一些比对。他们还创建了一个github资源库,里面有这11个框架的代码、有样例还有相关的文档信息。主要分为这两个方面,一个是调查,另一个就是这个开源资源。在这项工作中,他们调查了十一个安全多方计算的通用编译器。其中有9个框架和连个电路编译器。考虑了11种系统:EMP工具包,Obliv-C,ObliVM,TinyGar-ble,SCALE-MAMBA(以前为SPDZ),Wysteria,Share-mind,PICCO,ABY,Frigate和CB.原创 2020-05-15 15:15:59 · 3601 阅读 · 1 评论 -
论文学习记录20200320:隐私保护机器学习[NDSS2020]
Trident: Efficient 4PC Framework for Privacy Preserving Machine Learning这篇论文和上周那篇极其相似。4PC设置背后的动机是,在给予额外诚实方的情况下,研究3PC设置中现有解决方案在理论和实践上的性能改进。结果表明,与3PC相比,拥有一个额外的诚实方可以实现更简洁更高效的协议。 举例来说,在4PC中进行操作消除了对昂贵的...原创 2020-03-20 15:46:38 · 1366 阅读 · 0 评论 -
论文学习记录20200313:隐私保护机器学习[NDSS2020]
机器学习工具已经展示了它们在医疗和金融等许多重要领域的潜力,有助于得出有用的推论。在这些部门,数据的敏感和保密性质自然引起对数据隐私的关注。这促使了隐私保护机器学习(PPML)领域的数据隐私得到保证。通常,ML技术需要很大的计算能力,这导致基础设施有限的客户机依赖于安全外包计算(SOC)方法。在SOC环境下,计算外包给一组专门的、功能强大的云服务器,服务按使用付费。在这项工作中,我们探索了在SO...原创 2020-03-17 15:39:07 · 1552 阅读 · 0 评论 -
论文学习记录20200306:时序数据聚合[NDSS2011]
这篇论文讲的是对时间序列数据的聚合,时间序列数据(time series data)指的是在不同时间上收集到的数据,这类数据反映了某一事物、现象等随时间的变化状态或程度,比如说是,你每天的支出,月初和月末可能就不一样,可能随时间变化它是一个下降趋势,假如有人要调查学生的支出情况,就会对这些数据进行一个聚合然后来看整体的特征。在许多实际应用中,数据聚合器会挖掘来自多个组织或个人的数据,以研究群体...原创 2020-03-17 15:29:42 · 713 阅读 · 0 评论 -
论文学习记录20191220:多方安全计算[ccs17]
以下PPT和文字都是对论文的一些自己的理解,才疏学浅,如有不当,欢迎讨论。这是发在ccs2017的一篇有关安全多方计算的论文。论文题目为 Efficient, Constant-Round and Actively Secure MPC: Beyond the Three-Party Case。和前几周一样,这还是一个安全多方计算的问题。先解题:超过三方,文章主要讲的是5方,但是也可以...原创 2019-12-24 14:59:00 · 2448 阅读 · 0 评论