二、环 Ring


一、环的定义

 一个集合 R 被称为一个环,如果它满足以下条件:

  1. 对于 加法 满足:
    1. 闭合性:对于任意 a , b ∈ R a,b \in R a,bR,有 a + b ∈ R a+b \in R a+bR
    2. 交换律: a + b = b + a a+b=b+a a+b=b+a
    3. 结合律: ( a + b ) + c = a + ( b + c ) (a+b)+c=a+(b+c) (a+b)+c=a+(b+c)
    4. 零元(加法单位元):存在 0 ∈ R 0 \in R 0R,使得 0 + a = a + 0 = a 0+a=a+0=a 0+a=a+0=a,对于任意 a ∈ R a \in R aR
    5. 逆元:对于每个 a ∈ R a \in R aR,存在 − a ∈ R -a \in R aR,存在 a + ( − a ) = ( − a ) + a = 0 a+(-a)=(-a)+a=0 a+(a)=(a)+a=0
  2. 对于 乘法 满足:
    1. 结合律:对于任何 a , b , c ∈ R a,b,c \in R a,b,cR,满足 ( a ⋅ b ) ⋅ c = a ⋅ ( b ⋅ c ) (a \cdot b) \cdot c = a \cdot (b \cdot c) (ab)c=a(bc)
    2. 乘法 不一定 需要满足 交换律(除非是 交换环),也 不一定 需要有 单位元(除非特别指定)
  3. 对于 乘法对加法 满足:
    1. 分配律:对于任意 a , b , c ∈ R a,b,c \in R a,b,cR,满足:
      1. 左分配律: a ⋅ ( b + c ) = a ⋅ b + a ⋅ c a \cdot (b+c) = a \cdot b + a \cdot c a(b+c)=ab+ac
      2. 右分配律: ( b + c ) ⋅ a = b ⋅ a + c ⋅ a (b+c) \cdot a = b \cdot a + c \cdot a (b+c)a=ba+ca

二、环的分类与变种

1、交换环

 如果 R 的乘法满足交换律,则 R 被称为交换环。

2、含单位元的环

 如果环 R 存在一个乘法单位元 1 ∈ R 1 \in R 1R,使得对于任意 r ∈ R r \in R rR,有 1 ⋅ r = r ⋅ 1 = r 1 \cdot r = r \cdot 1 = r 1r=r1=r,则称 R 带有单位元。通常,单位元 1 ≠ 0 1 \neq 0 1=0,但在特殊情况下(如零环), 1 = 0 1=0 1=0 是可能的。
一个环中一定有加法单位元。

3、零环

 如果 R 只有一个元素 {0},且 0 + 0 = 0 + 0 = 0 0+0=0+0=0 0+0=0+0=0,则 R 是一个零环。

4、非交换环

 如果 R 的乘法不满足交换律(存在 a , b ∈ R a,b \in R a,bR,使得 a ⋅ b ≠ b ⋅ a a \cdot b \neq b \cdot a ab=ba),则称为非交换环。例如,矩阵环(例如 2x2 实数矩阵环 M 2 ( R ) M_2(R) M2(R))是非交换环。

5、整环

 整环是交换环的一个子类,满足:

  • 带有单位元 1 ≠ 0 1 \neq 0 1=0
  • 没有零因子(即如果 a ⋅ b = 0 a \cdot b=0 ab=0,则 a = 0 a=0 a=0 b = 0 b=0 b=0

6、域

 域是整环的一个特殊情况,其中 每个非零元素都有乘法逆元。例如,实数域 R、有理数域 Q、复数域 C 都是域。


三、环的性质与应用

  1. 子环
     一个环 R 的子集 S 如果本身是环(使用 R 相同的加法和乘法),则 S 是 R 的子环。例如,偶数集合是 Z 的子环。
  2. 理想 (idea)
    理想 环的一个子集,满足加法封闭性、乘法封闭性。理想是环的一个重要子结构,用于研究环的性质和分解。
  3. 同态与同构
     环之间的结构保持关系可以通过环同态和环同构研究。例如,整数环 Z 和模 n 下的整数环 Z n Z_n Zn 可以通过同态联系。

四、环与群和域的对比

  1. 环与群的关系:
    加法部分 是一个 交换群,但 还包括 乘法结构(可能非交换)。例如, ( Z , + ) (Z,+) (Z,+) 是一个群,但 ( Z , + , × ) (Z,+,\times) (Z,+,×) 是一个环。
  2. 环与域的关系:
    特殊的环,不仅是 交换环整环,还要求 每个非零元素乘法逆元。例如,Q 是域,但 Z 不是域。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值