
一些散乱的数学基础
文章平均质量分 92
将在学习过程中碰到的数学知识积累在这里
Miyazaki_Hayao
生活细碎,万物成诗。
展开
-
在循环群模运算中计算逆元
这是最常用的方法,用于找到整数 a 和 b 的最大公约数,并找到整数 x 和 ya⋅xb⋅ygcdaba⋅xb⋅ygcdab如果gcdab1gcdab1,则x 是 a 模 b 的逆元。输入是 a, b (a 要小于 b),输出是 x。原创 2024-12-16 00:56:54 · 1098 阅读 · 0 评论 -
一、群 Group
封闭性对于任意的ab∈Ga,b \in Gab∈G,它们的运算结果a⋅ba \cdot ba⋅b也属于 G。结合律对于任意的abc∈Gabc∈G,有a⋅b⋅ca⋅b⋅ca⋅b⋅ca⋅b⋅c。运算需要满足结合性,但不一定需要满足交换性(除非是交换群单位元存在一个元素e∈Ge \in Ge∈G,称为单位元,使得对于任意a∈Ga \in Ga∈G,有e⋅aa⋅eae⋅aa⋅e。原创 2025-02-25 18:34:45 · 70 阅读 · 0 评论 -
二、环 Ring
对于加法满足:闭合性:对于任意ab∈Ra,b \in Rab∈R,有ab∈Ra+b \in Rab∈Rabbaa+b=b+aabbaabcabcabcabc零元(加法单位元):存在0∈R0 \in R0∈R,使得0aa0a0+a=a+0=a0aa0a,对于任意a∈Ra \in Ra∈R逆元:对于每个a∈Ra \in Ra∈R,存在−a∈R-a \in R−a∈R,存在a−。原创 2025-02-25 21:02:08 · 103 阅读 · 0 评论 -
三、多项式环
多项式环是抽象代数中一种重要的代数结构,基于一个环 R(通常是交换环)构造出关于一个或多个未知元(如 x,y,z)的“多项式” 集合,并在其上定义加法和乘法运算,使其形成一个新的环。设 R 是一个环(通常是交换环,可能带有单位元 1),x 是一个形式上的未知元(变量)。R[x]是 R 上关于 x的所有多项式构成的集合。一个多项式fx∈Rxfx∈Rxfxa0a1xa2x2anxnfxa0a1xa2x2...an。原创 2025-02-25 21:52:08 · 339 阅读 · 0 评论 -
四、分圆多项式
单位根”(又叫单位根元素或根的单位)是复数领域中的一个重要概念,广泛应用于代数、数论、群论和环论等数学分支。它是指满足某个特定方程的复数解。其定义是,单位根是指满足一下方程的复数 zzn1z^n=1zn1其中 n 是正整数,z 称为n-次单位根,而这个方程的所有解称为n-次单位根的集合。分圆多项式一般表示为ϕx\phi(x)ϕx,它的根正是单位根,也就是方程xn1x^n=1xn1的解。简单来说,分圆多项式是n 次单位根的最小多项式。n 次单位根是复数解e2π。原创 2025-02-26 15:53:23 · 224 阅读 · 0 评论