pytorch之交叉熵(笔记四)

本文通过实例探讨了线性回归中二次代价函数与分类任务中交叉熵代价函数的差异。在训练MNIST手写数字识别模型时,交叉熵在相同训练次数下展现出更快的收敛速度和更高的预测准确性。这表明对于分类问题,交叉熵作为损失函数更为合适。
摘要由CSDN通过智能技术生成

 师傅说过一句话:线性回归用二次代价函数,分类使用交叉熵。

通过一个例子观察一下:

通过观察发现,输入是0.82的比输入是0.98的收敛的更快,为什么呢?为我们通过sigmod函数观察一下。

原因是在0.98的时候收敛的比较平缓,因为斜率比较小,0.82的时候斜率大,收敛的就比较快。

 交叉熵的概念

交叉熵和二次代价函数对比。

二次代价函数:代码请参考(我的博客pytorch之mnist手写数字识别(笔记三)):https://mp.csdn.net/editor/html/116517592

测试结果:

F:\开发工具\pythonProject\tools\venv\Scripts\python.exe F:/开发工具/pythonProject/tools/pytools/pytools03.py
torch.Size([64, 1, 28, 28])
torch.Size([64])
epoch: 0
Test acc:0.8886
epoch: 1
Test acc:0.903
epoch: 2
Test acc:0.9075
epoch: 3
Test acc:0.91
epoch: 4
Test acc:0.9142
epoch: 5
Test acc:0.9157
epoch: 6
Test acc:0.9174
epoch: 7
Test acc:0.9171
epoch: 8
Test acc:0.9188
epoch: 9
Test acc:0.9189

Process finished with exit code 0

交叉熵(mnist手写数字举例):

import numpy as np
import torch
from torch import nn,optim
from torch.autograd import Variable
from torchvision import datasets,transforms
from torch.utils.data import DataLoader
#训练集
train_dataset=datasets.MNIST(root='./', #存放到项目目录下
                             train=True,  #是训练数据
                             transform=transforms.ToTensor(),  #转换成基本类型tensor数据
                             download=True) #需要下载
#测试集
test_dataset=datasets.MNIST(root='./',
                             train=False,
                             transform=transforms.ToTensor(),
                             download=True)

#每次训练图片的数量
batch_size=64
#装在训练集数据
train_loader=DataLoader(dataset=train_dataset,
                        batch_size=batch_size,
                        shuffle=True
                        )
#加载训练集
test_loader=DataLoader(dataset=test_dataset,
                       batch_size=batch_size,
                       shuffle=True
                       )
for i,data in enumerate(train_loader):
    inputs,labels=data
    print(inputs.shape)
    print(labels.shape)
    break

#定义网络结构
class Net(nn.Module):
    def __init__(self):
        super(Net,self).__init__()#调用父类方法
        self.fc1=nn.Linear(784,10)#28*28=784,10个输出
        self.softmax=nn.Softmax(dim=1)#对第一个维度计算他的概率值
    def forward(self,x):
        #[64,1,28,28]----(64,784)四维数据编程2维数据
        x=x.view(x.size()[0],-1)#-1表示自动匹配
        x=self.fc1(x)#传递给全连接层
        x=self.softmax(x)#传递给激活函数
        return x

LR=0.5
#定义模型
model=Net()
#定义代价函数(交叉熵)
mse_loss=nn.CrossEntropyLoss()
#定义优化器
optimizer=optim.SGD(model.parameters(),LR)

def train():
    for i,data in enumerate(train_loader):
        #获得一个皮次数据和标签
        inputs,labels=data
        #获得模型预测结果(64,10)
        out=model(inputs)
        #交叉熵代价函数out(batch,C)labels(batch)
        loss=mse_loss(out,labels)
        #梯度清零
        optimizer.zero_grad()
        #计算梯度
        loss.backward()
        #修改权值
        optimizer.step()

#测试
def test():
    correct=0
    for i,data in enumerate(test_loader):
        #获取一个批次的数据和标签
        inputs,labels=data
        #获得模型的预测结果(64,10)
        out=model(inputs)
        #获取最大值,以及最大值所在的位置
        _,predicted=torch.max(out,1)
        # 预测正确的数量
        correct += (predicted == labels).sum()
    print("Test acc:{0}".format(correct.item()/len(test_dataset)))

for epoch in range(10):
    print("epoch:",epoch)
    train()
    test()



测试结果:

F:\开发工具\pythonProject\tools\venv\Scripts\python.exe F:/开发工具/pythonProject/tools/pytools/pytools031.py
torch.Size([64, 1, 28, 28])
torch.Size([64])
epoch: 0
Test acc:0.9035
epoch: 1
Test acc:0.9119
epoch: 2
Test acc:0.9183
epoch: 3
Test acc:0.9189
epoch: 4
Test acc:0.921
epoch: 5
Test acc:0.9202
epoch: 6
Test acc:0.9231
epoch: 7
Test acc:0.9233
epoch: 8
Test acc:0.9243
epoch: 9
Test acc:0.9251

Process finished with exit code 0

测试结果对比,同样训练次数,交叉熵的收敛速度更快,预测结果准确度更高。

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值