欧拉函数的一个性质及其证明

6 篇文章 0 订阅
1 篇文章 0 订阅

性质

欧拉函数φ(n)指小于或等于n的正整数中与n互质的数的数目,假设

n=pe11pe22pekkpi(1<=i<=k)
那么
φ(n)=(p11)pe111(p21)pe212(pk1)pek1k
其中
d|nφ(d)=n

证明

令函数

f(n)=d|nφ(d)
因此
f(peii)=φ(1)+φ(pi)+φ(p2i)++φ(peii)=1+pi1+p2ipi++peiipei1i=peiipi(1<=i<=k)
因为φ(n)是积性函数,所以f(n)也是积性函数(这里没证明)。
假设
n=pe11pe22pekk
所以
d|nφ(d)=f(n)=f(pe11pe22pekk)=f(pe11)f(pe22)f(pekk)=pe11pe22pekk=n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值