性质
欧拉函数φ(n)指小于或等于n的正整数中与n互质的数的数目,假设
n=pe11∗pe22∗⋅⋅⋅∗pekk(pi是质数(1<=i<=k))
那么
φ(n)=(p1−1)pe1−11∗(p2−1)pe2−12∗⋅⋅∗(pk−1)pek−1k⋅
其中
∑d|nφ(d)=n
证明
令函数
f(n)=∑d|nφ(d)
因此
f(peii)=φ(1)+φ(pi)+φ(p2i)+⋅⋅⋅+φ(peii)=1+pi−1+p2i−pi+⋅⋅⋅+peii−pei−1i=peii(pi是质数(1<=i<=k))
因为φ(n)是积性函数,所以f(n)也是积性函数(这里没证明)。
假设
n=pe11∗pe22∗⋅⋅⋅∗pekk
所以
∑d|nφ(d)=f(n)=f(pe11∗pe22∗⋅⋅⋅∗pekk)=f(pe11)∗f(pe22)∗⋅⋅⋅∗f(pekk)=pe11∗pe22∗⋅⋅⋅∗pekk=n