欧拉函数的性质

/*
欧拉函数的条件:小于自然数N并与N互质(除1以外无其他公因子)的自然数。
1、φ(n)=n*(1-1/p1)*(1-1/p2)*........*(1-1/pi) ->容斥原理可证
2、欧拉函数是积性函数——若m,n互质,φ(mn)=φ(m)φ(n).->公式1可证
3、若n是质数p的k次幂,φ(n)=p^k-p^(k-1)=(p-1)p^(k-1)。
4、n=p1^q1*p2^q2*……pn^qn ,
   φ(n)=p1^(q1-1)*p2^(q2-1)……pn^(qn-1)*(p1-1)*(p2-1)*(p3-1)……(pn-1)->公式2、3可证 ,它可以证明很多结论
5、φ(p)=p-1(p是质数)
6、φ(1)=1
7、欧拉函数值为偶数 (n>=2)->公式4或者与(n,m)=1 =》(n,n-m)=1成对存在
8、p、q为两个质数,则φ(p*q)=(p-1)*(q-1);利用3和5
9、3的一个特例k==2,则φ(n)=(p-1)*p
10、可以快速求出欧拉函数的值(a为N的质因数) 
	若(N%a==0 && (N/a)%a==0) 则有:E(N)=E(N/a)*a; 
	若(N%a==0 && (N/a)%a!=0) 则有:E(N)=E(N/a)*(a-1);-》利用1或4
*/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值