分析
首先我们可以发现,两个询问都可以通过一个子程序来求。
接着,如果每到一个城市再找下一个城市,显然是行不通的。所以首先先预处理从每一个城市开始,小A和小B要去的城市。预处理的方法很多,我用的是双向链表:按高度把城市排序,用双向链表把每个城市的相邻的城市里连起来,再从每个城市按双向链表往两边搜,如果搜到的城市在这个城市的西边就删掉,否则记录。左右分别记录两个城市,排个序就可以的出小A和小B要去的城市了。
然后我们就可以发现这是一棵树,所以倍增。
我们设g[i][j]指从i城市走j^2轮走到的点(一轮指小A和小B各走一次,小A先走),fa[i][j]指指从i城市走j^2轮的小A走过路程,fb[i][j]指指从i城市走j^2轮的小B走过路程。转移显然。
#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
const long long maxlongint=2147483647;
using namespace std;
struct lyd
{
long long last;
long long next;
};
lyd a[200000];
long long h[200000][2],c[200000][5][3],qu[200000][3],yh[200000],lf[3],n,m,tot,sum,num,g[150000][17],fa[150000][17],fb[150000][17];
double ans;
void q(long long l,long long r)
{
long long i=l,j=r,mid=h[(l+r)/2][1],e;
while(i<j)
{
while(h[i][1]<mid) i++;
while(h[j][1]>mid) j--;
if(i<=j)
{
e=h[i][0];
h[i][0]=h[j][0];
h[j][0]=e;
e=h[i][1];
h[i][1]=h[j][1]