【JZOJ5180】【NOI2017模拟6.29】呵呵

题目

这里写图片描述

分析

套上prufer序列
对于一颗n个节点度数分别为 d1d2...dn 方案数为 (n2)!(d11)!(d21)!......(dn1)!
所以答案为

d1+d2+...+dn=2n2(n2)!(d11)!(d21)!...(dn1)!wd11wd22...wdnnd1d2...dn

使 di1
w1w2...wn(n2)!d1+d2+...+dn=n21d1!d2!...dn!wd11wd22...wdnn(d1+1)(d2+1)...(dn+1)

考虑处理
d1+d2+...+dn=n21d1!d2!...dn!wd11wd22...wdnn(d1+1)(d2+1)...(dn+1)

对于多项式 (d1+1)(d2+1)...(dn+1) ,拆开后变成一个个形如 d1d2...dk 的项
我们考虑 d1d2d3
d1+d2+...+dn=n21d1!d2!...dn!wd11wd22...wdnnd1d2d3

w1w2w3d1+d2+...+dn=n231d1!d2!...dn!wd11wd22...wdnn

k=1n2(1p1<p2<...<pknΠki=1wpi)(ni=1wi)n2k(n2k)!

//后面的内容我还不太理解,只能大概讲讲。如果讲错了,请大佬指出一下错误
现在解释一下最后一条式子
根据指数型生成函数的定义
G(x)=gixii!=x11!+x22!+x33!+..

gi=1 时, G(x)=ex
那么,
d1+d2+...+dn=n2k1d1!d2!...dn!wd11wd22...wdnn

=(w111!+w212!+..)(w121!+w222!+..)...(w1n1!+w2n2!+..)[n2k]

=G(w1)G(w2)...G(wn)[n2k]

=ew1+w2+...+wn[n2k]

=G(w1+w2+...+wn)=(w1+w2+...+wn)ii!

那么当 i=n2k 时,则就是 d1+d2+...+dn=n2k1d1!d2!...dn!wd11wd22...wdnn
即为
(ni=1wi)n2k(n2k)!

#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
#include <map>
const int maxlongint=2147483647;
const long long mo=1e9+7;
const int N=2005;
using namespace std;
long long w[N],ans,f[N],sum,jc[N],ww;
int n;
long long mi(long long x,int y)
{
    long long s=1;
    for(;y;x=x*x%mo,y>>=1) s=y&1?s*x%mo:s;
    return s;
}
int main()
{
    scanf("%d",&n);
    f[0]=jc[0]=ww=1;
    for(int i=1;i<=n;i++)
    {
        scanf("%lld",&w[i]),sum=(sum+w[i])%mo,jc[i]=jc[i-1]*i%mo,ww=ww*w[i]%mo;
        for(int j=i;j>=1;j--) f[j]=(f[j]+f[j-1]*w[i]%mo)%mo;
    }
    for(int k=0;k<=n-2;k++) 
        ans=(ans+f[k]*mi(sum,n-2-k)%mo*mi(jc[n-2-k],mo-2)%mo)%mo;
    printf("%lld",ans*ww%mo*jc[n-2]%mo);
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值