堆排序的代码实现与思考

堆的定义如下:n个元素的序列{k1,k2,…,kn}当且仅当满足以下关系时,称之为堆。

这里写图片描述

若将和此序列对应的一维数组看成一个完全二叉树,即堆的含义表明安全二叉树中所有非终端节点的值均不大于(或不小于)其左右孩子节点的值。堆顶元素则必是堆顶最大值或最小值。

具体的分析在严蔚敏的《数据结构》上已经说的很清楚很明白了。作为总结,说一下在代码实现中需要注意的两点。
第一,无序序列构造堆,方向是从叶子节点到根节点结束,所以要从第一个非叶子节点开始进行构造,即从L.length/2的位置开始。
第二,每个位置进行交换之后,可能会导致该子树不再是堆,所以还要对子树进行调整。
以上两点说完就上代码:

#include<iostream>
using namespace std;
const int  MAXSIZE (20);
typedef struct
{
    int r[MAXSIZE+1];
    int length;
}sqList;
void HeapAdjust(sqList &L,int s,int m)
{
    int rc=L.r[s];
    for(int j=2*s;j<=m;j*=2)
    {
        if(j<m&&L.r[j]>L.r[j+1]) ++j;
        if(L.r[s]<=L.r[j]) break;
        int temp=L.r[s];
        L.r[s]=L.r[j];
        L.r[j]=temp;
        s=j;
    }
    L.r[s]=rc;


}
int main()
{
    sqList L;
    L.r[1]=49;
    L.r[2]=38;
    L.r[3]=65;
    L.r[4]=97;
    L.r[5]=76;
    L.r[6]=13;
    L.r[7]=27;
    L.r[8]=49;
    L.length=8;
    //构造堆
    for(int i=L.length/2;i>0;--i)
        HeapAdjust(L,i,L.length);

    //堆排序
    for(int i=L.length;i>=1;--i)
    {
        cout<<L.r[1]<<" ";
        L.r[1]=L.r[i];
        HeapAdjust(L,1,i-1);
    }
    return 0;
}
阅读更多
个人分类: 数据结构
上一篇快速排序递归与非递归代码实现与思考
下一篇中国移动笔试有感
想对作者说点什么? 我来说一句

选择排序Java语言实现

2016年04月19日 10KB 下载

没有更多推荐了,返回首页

关闭
关闭