CHICX1229
码龄2年
关注
提问 私信
  • 博客:80,791
    80,791
    总访问量
  • 62
    原创
  • 26,897
    排名
  • 519
    粉丝
  • 0
    铁粉
  • 学习成就

个人简介:做人生价值的投资家

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:安徽省
  • 加入CSDN时间: 2023-03-14
博客简介:

大象不下象棋的博客

博客描述:
一直在路上
查看详细资料
  • 原力等级
    成就
    当前等级
    3
    当前总分
    420
    当月
    9
个人成就
  • 获得819次点赞
  • 内容获得39次评论
  • 获得740次收藏
  • 代码片获得931次分享
创作历程
  • 62篇
    2024年
成就勋章
TA的专栏
  • 问题解决之路
    8篇
  • 机器学习
    19篇
  • 书评
    1篇
  • 数据结构与算法
    15篇
  • 深度学习
    3篇
  • 作品集
    2篇
  • 吴恩达机器学习
    11篇
兴趣领域 设置
  • 人工智能
    数据挖掘机器学习数据分析
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

182人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【Hadoop】改一下core-site.xml和hdfs-site.xml配置就可以访问Web UI

作为绑定地址时,实际会将服务监听在所有可用的网络接口上。这意味着,任何从外部访问的请求都可以通过任何网络适配器连接到服务,包括本地连接、局域网连接等。所有的都改为0.0.0.0 就可以访问Web UI。
原创
发布博客 2024.10.05 ·
479 阅读 ·
4 点赞 ·
0 评论 ·
4 收藏

人脸识别模型 shape_predictor_68_face_landmarks.dat 下载

是一个用于人脸关键点检测的预训练模型,通常使用于还需要 Dlib 库。脸识别的68个特征点检测库dat文件,
原创
发布博客 2024.07.12 ·
506 阅读 ·
5 点赞 ·
0 评论 ·
1 收藏

如何将BilBil视频永久保存到本地电脑?一招解决

简单易懂 跟着操作就可以了
原创
发布博客 2024.07.11 ·
941 阅读 ·
13 点赞 ·
0 评论 ·
3 收藏

如何连接到公司的服务器?

其他方式也有很多,比如通过cmd,html网页等等。3.输入主机 用户名 密码 端口。1.下载FileZilla。
原创
发布博客 2024.07.11 ·
366 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

VMware Workstation Pro 16许可证秘钥分享

ZF3R0-FHED2-M80TY-8QYGC-NPKYFYF390-0HF8P-M81RQ-2DXQE-M2UT6ZF71R-DMX85-08DQY-8YMNC-PPHV8
原创
发布博客 2024.06.09 ·
20402 阅读 ·
84 点赞 ·
23 评论 ·
60 收藏

机器学习常见术语简易解释

1234567891011121314。
原创
发布博客 2024.06.05 ·
127 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

[无监督学习] 17.详细图解t-SNE

t-SNE(t-Distributed Stochastic Neighbor Embedding,t 分布随机邻域嵌入)是一种将高维的复杂数据降维为二维(或三维)的算法,用于低维空间的可视化。在降维时,t-SNE 会将类似结构的数据聚集在一起,这有助于我们理解数据的结构。
原创
发布博客 2024.06.05 ·
1776 阅读 ·
25 点赞 ·
0 评论 ·
12 收藏

[无监督学习] 16.详细图解LLE

无监督学习中的一项重要任务是将结构复杂的数据转化为更简单的形式。LLE(Locally Linear Embedding,局部线性嵌入)可以将以弯曲或扭曲的状态埋藏在高维空间中的结构简单地表示在低维空间中。
原创
发布博客 2024.06.05 ·
972 阅读 ·
14 点赞 ·
0 评论 ·
5 收藏

[无监督学习] 15.详细图解混合高斯分布

如果数据集中有多组数据,可以使用混合高斯分布(即多个高斯分布的线性组合)来实现聚类。
原创
发布博客 2024.06.03 ·
1294 阅读 ·
40 点赞 ·
0 评论 ·
27 收藏

[无监督学习] 14.详细图解k-means 算法

k-means 算法是一种有代表性的聚类算法。由于该算法简单易懂,又可以用于比较大的数据集,所以在市场分析和计算机视觉等领域得到了广泛的应用。
原创
发布博客 2024.06.03 ·
1092 阅读 ·
25 点赞 ·
0 评论 ·
8 收藏

[无监督学习] 13.详细图解LDA

LDA 是一种用于自然语言处理等的算法。该算法可以根据文本中的单词找出潜在的主题,并描述每个文本是由什么主题组成的,还可以用于说明一个文本不只有一个主题,而是有多个主题。例如,一篇真实的新闻文本可能包含多个主题,如“体育”和“教育”等,使用 LDA 就可以很好地描述这种新闻文本。
原创
发布博客 2024.06.02 ·
790 阅读 ·
8 点赞 ·
0 评论 ·
9 收藏

[无监督学习] 12.详细图解NMF

PCA 通过将不同的脸(负的脸和正的脸。听上去是不是有些奇怪?)加在一起来恢复原始图像。NMF 则通过组合具有人脸部分特征的图像来恢复原始图像。NMF 的潜在变量的含义(在本例中就是人脸的部分特征)的可解释性更强。
原创
发布博客 2024.06.02 ·
870 阅读 ·
10 点赞 ·
0 评论 ·
14 收藏

[无监督学习] 11.详细图解LSA

坐汽车去公司坐车去的在餐厅吃汉堡牛肉饼在餐厅吃意大利面
原创
发布博客 2024.06.01 ·
873 阅读 ·
18 点赞 ·
0 评论 ·
21 收藏

[有监督学习] 9.详细图解KNN

1 计算输入数据与训练数据之间的距离。2 得到距离输入数据最近的 k 个训练数据。3 对训练数据的标签进行多数表决,将结果作为分类结果。
原创
发布博客 2024.06.01 ·
663 阅读 ·
5 点赞 ·
0 评论 ·
14 收藏

[无监督学习] 10.详细图解PCA

1 计算协方差矩阵。2 对协方差矩阵求解特征值问题,求出特征向量和特征值。3 以数据表示各主成分方向。
原创
发布博客 2024.06.01 ·
1214 阅读 ·
26 点赞 ·
0 评论 ·
6 收藏

[有监督学习] 8.详细图解神经网络

在图 2-35 中,输入数据为三维数据,中间层为二维数据,输出为一维数据(关于从输入层到中间层、从中间层到输出层之间的计算,后面的“算法说明”部分将详细介绍)。左端的层叫作输入层,表示输入数据本身。右端的层叫作输出层,取输入数据分类结果的概率。在二元分类的情况下,输出层输出的概率只有一个。在多元分类的情况下,输出层同时输出属于每个分类对象的标签的概率。通过在输入层和输出层中间叠加中间层,神经网络得以学习复杂的决策边界。
原创
发布博客 2024.06.01 ·
973 阅读 ·
8 点赞 ·
0 评论 ·
18 收藏

[有监督学习] 7.详细图解随机森林

随机森林的目标是利用多个决策树模型,获得比单个决策树更高的预测精度。单个决策树的性能并不一定很高,但是多个决策树汇总起来,一定能创建出泛化能力更强的模型。
原创
发布博客 2024.06.01 ·
2365 阅读 ·
18 点赞 ·
0 评论 ·
24 收藏

[有监督学习]6.详细图解朴素贝叶斯

朴素贝叶斯是一个基于概率进行预测的算法,在实践中被用于分类问题。具体来说,就是计算数据为某个标签的概率,并将其分类为概率值最大的标签。朴素贝叶斯主要用于文本分类和垃圾邮件判定等自然语言处理中的分类问题。下面使用朴素贝叶斯将虚构的新闻标题分类为“电影”和“宇宙”两个类别(图 2-26)。
原创
发布博客 2024.06.01 ·
622 阅读 ·
17 点赞 ·
0 评论 ·
7 收藏

[有监督学习]5.详细图解支持向量机(核方法)

核方法适合用于“相比特征的可解释性更看重精度”的场景。
原创
发布博客 2024.06.01 ·
865 阅读 ·
11 点赞 ·
0 评论 ·
20 收藏

[有监督学习]4.详细图解支持向量机

支持向量机(Support Vector Machine,SVM)是一种应用范围非常广泛的算法,既可以用于分类,也可以用于回归。
原创
发布博客 2024.06.01 ·
901 阅读 ·
22 点赞 ·
0 评论 ·
5 收藏
加载更多