【Hadoop】改一下core-site.xml和hdfs-site.xml配置就可以访问Web UI 作为绑定地址时,实际会将服务监听在所有可用的网络接口上。这意味着,任何从外部访问的请求都可以通过任何网络适配器连接到服务,包括本地连接、局域网连接等。所有的都改为0.0.0.0 就可以访问Web UI。
人脸识别模型 shape_predictor_68_face_landmarks.dat 下载 是一个用于人脸关键点检测的预训练模型,通常使用于还需要 Dlib 库。脸识别的68个特征点检测库dat文件,
VMware Workstation Pro 16许可证秘钥分享 ZF3R0-FHED2-M80TY-8QYGC-NPKYFYF390-0HF8P-M81RQ-2DXQE-M2UT6ZF71R-DMX85-08DQY-8YMNC-PPHV8
[无监督学习] 17.详细图解t-SNE t-SNE(t-Distributed Stochastic Neighbor Embedding,t 分布随机邻域嵌入)是一种将高维的复杂数据降维为二维(或三维)的算法,用于低维空间的可视化。在降维时,t-SNE 会将类似结构的数据聚集在一起,这有助于我们理解数据的结构。
[无监督学习] 16.详细图解LLE 无监督学习中的一项重要任务是将结构复杂的数据转化为更简单的形式。LLE(Locally Linear Embedding,局部线性嵌入)可以将以弯曲或扭曲的状态埋藏在高维空间中的结构简单地表示在低维空间中。
[无监督学习] 13.详细图解LDA LDA 是一种用于自然语言处理等的算法。该算法可以根据文本中的单词找出潜在的主题,并描述每个文本是由什么主题组成的,还可以用于说明一个文本不只有一个主题,而是有多个主题。例如,一篇真实的新闻文本可能包含多个主题,如“体育”和“教育”等,使用 LDA 就可以很好地描述这种新闻文本。
[无监督学习] 12.详细图解NMF PCA 通过将不同的脸(负的脸和正的脸。听上去是不是有些奇怪?)加在一起来恢复原始图像。NMF 则通过组合具有人脸部分特征的图像来恢复原始图像。NMF 的潜在变量的含义(在本例中就是人脸的部分特征)的可解释性更强。
[有监督学习] 8.详细图解神经网络 在图 2-35 中,输入数据为三维数据,中间层为二维数据,输出为一维数据(关于从输入层到中间层、从中间层到输出层之间的计算,后面的“算法说明”部分将详细介绍)。左端的层叫作输入层,表示输入数据本身。右端的层叫作输出层,取输入数据分类结果的概率。在二元分类的情况下,输出层输出的概率只有一个。在多元分类的情况下,输出层同时输出属于每个分类对象的标签的概率。通过在输入层和输出层中间叠加中间层,神经网络得以学习复杂的决策边界。
[有监督学习]6.详细图解朴素贝叶斯 朴素贝叶斯是一个基于概率进行预测的算法,在实践中被用于分类问题。具体来说,就是计算数据为某个标签的概率,并将其分类为概率值最大的标签。朴素贝叶斯主要用于文本分类和垃圾邮件判定等自然语言处理中的分类问题。下面使用朴素贝叶斯将虚构的新闻标题分类为“电影”和“宇宙”两个类别(图 2-26)。