poj 1854 (素数分解+递归二分求等比数列+...)

题意:
给你两个数a,b;
求a^b的所有的因子的和模上9901;
做法:

这道题目应用定理主要有三个:

(1)   整数的唯一分解定理:

      任意正整数都有且只有一种方式写出其素因子的乘积表达式。

      A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)   其中pi均为素数

(2)   约数和公式:

对于已经分解的整数A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)

有A的所有因子之和为

    S = (1+p1+p1^2+p1^3+...p1^k1) * (1+p2+p2^2+p2^3+….p2^k2) * (1+p3+ p3^3+…+              p3^k3) * .... * (1+pn+pn^2+pn^3+...pn^kn)

(3)   同余模公式:

(a+b)%m=(a%m+b%m)%m

(a*b)%m=(a%m*b%m)%m

有了上面的数学基础,那么本题解法就很简单了:

1: 对A进行素因子分解

分解A的方法:

A首先对第一个素数2不断取模,A%2==0时 ,记录2出现的次数+1,A/=2;

当A%2!=0时,则A对下一个连续素数3不断取模...

以此类推,直到A==1为止。

 

注意特殊判定,当A本身就是素数时,无法分解,它自己就是其本身的素数分解式。

最后得到A = p1^k1 * p2^k2 * p3^k3 *...* pn^kn.
      故 A^B = p1^(k1*B) * p2^(k2*B) *...* pn^(kn*B);


2:A^B的所有约数之和为:

     sum = [1+p1+p1^2+...+p1^(a1*B)] * [1+p2+p2^2+...+p2^(a2*B)] *...*                                      [1+pn+pn^2+...+pn^(an*B)].


3: 用递归二分求等比数列1+pi+pi^2+pi^3+...+pi^n:

(1)若n为奇数,一共有偶数项,则:
      1 + p + p^2 + p^3 +...+ p^n

      = (1+p^(n/2+1)) + p * (1+p^(n/2+1)) +...+ p^(n/2) * (1+p^(n/2+1))
      = (1 + p + p^2 +...+ p^(n/2)) * (1 + p^(n/2+1))

上式中红色加粗的前半部分恰好就是原式的一半,那么只需要不断递归二分求和就可以了,后半部分为幂次式,将在下面第4点讲述计算方法。

(2)若n为偶数,一共有奇数项,则:
      1 + p + p^2 + p^3 +...+ p^n

      = (1+p^(n/2+1)) + p * (1+p^(n/2+1)) +...+ p^(n/2-1) * (1+p^(n/2+1)) + p^(n/2)
      = (1 + p + p^2 +...+ p^(n/2-1)) * (1+p^(n/2+1)) + p^(n/2);

   上式红色加粗的前半部分恰好就是原式的一半,依然递归求解


4:反复平方法计算幂次式p^n

   这是本题关键所在,求n次幂方法的好坏,决定了本题是否TLE。

   以p=2,n=8为例

   常规是通过连乘法求幂,即2^8=2*2*2*2*2*2*2*2

   这样做的要做8次乘法

   而反复平方法则不同,

   定义幂sq=1,再检查n是否大于0,

While,循环过程若发现n为奇数,则把此时的p值乘到sq

{

                n=8>0 ,把p自乘一次, p=p*p=4     ,n取半 n=4

                n=4>0 ,再把p自乘一次, p=p*p=16   ,n取半 n=2

n=2>0 ,再把p自乘一次, p=p*p=256  ,n取半 n=1,sq=sq*p

n=1>0 ,再把p自乘一次, p=p*p=256^2  ,n取半 n=0,弹出循环

}

则sq=256就是所求,显然反复平方法只做了3次乘法


代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;

const int SIZE = 10010;
int yes[SIZE];

int n[SIZE];
int A, B;

void get_prim()   //打表法求出所有的素数
{
    int m=sqrt(SIZE)+1;

    memset(yes,0,sizeof(yes));
    for(int i=2;i<=m;i++)
        if(!yes[i])
        {
            for(int j=i*i;j<SIZE;j+=i)
                yes[j]=1;
        }
}

void factor()  //把A进行素数分解,n[i]为分出的系数
{

    for(int i=2;i<SIZE;i++)
        if(!yes[i])
        {
            n[i]=0;
            while(A%i==0)
            {
                n[i]++;
                A/=i;
            }
        }
}

//递归求x^y次幂
long long p_mi(int x, long long y)
{
    long long a;

    if(y==0) return 1;
    if(y==1) return x;
    if(y%2==1)    //y为奇数时有,x^y=((x^((y-1)/2))^2)*x
    {
        a=p_mi(x,(y-1)/2)%9901;
        return ((a*a%9901)*x)%9901;
    }
    else
    {
        a=p_mi(x,y/2)%9901;
        return (a*a)%9901;
    }
}

long long p_sum(int x, long long y)
{
    long long k1, k2, t;

    if(y==0) return 1;
    if(y==1) return (1+x);
    if(y%2==1)    //求x的最高次数为y的等比数列。当y为奇数,可直接用公式。。。
    {
        k1=(p_mi(x,y/2+1)+1)%9901;
        k2=p_sum(x,y/2)%9901;
        return (k1*k2)%9901;
    }
    else          //y为偶数时,则y-1为奇数,求出x^y+p_sum(x,y-1)
    {
        k1=p_mi(x,y)%9901;
        k2=p_sum(x,y-1)%9901;
        return (k1+k2)%9901;
    }
}

int main()
{
    int sum;

    get_prim();
    while(cin>>A>>B)
    {
        sum=1;
        factor();
        for(int i=2;i<SIZE;i++)
        {
            if(yes[i] || !n[i]) continue;
            sum=(sum*p_sum(i,n[i]*B))%9901;
        }
        if(A!=1) sum=sum*p_sum(A,B)%9901;  //处理A为比较大的素数的情况
        cout<<sum<<endl;
    }

    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值