题意:
给你两个数a,b;
求a^b的所有的因子的和模上9901;
做法:
这道题目应用定理主要有三个:
(1) 整数的唯一分解定理:
任意正整数都有且只有一种方式写出其素因子的乘积表达式。
A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn) 其中pi均为素数
(2) 约数和公式:
对于已经分解的整数A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)
有A的所有因子之和为
S = (1+p1+p1^2+p1^3+...p1^k1) * (1+p2+p2^2+p2^3+….p2^k2) * (1+p3+ p3^3+…+ p3^k3) * .... * (1+pn+pn^2+pn^3+...pn^kn)
(3) 同余模公式:
(a+b)%m=(a%m+b%m)%m
(a*b)%m=(a%m*b%m)%m
有了上面的数学基础,那么本题解法就很简单了:
1: 对A进行素因子分解
分解A的方法:
A首先对第一个素数2不断取模,A%2==0时 ,记录2出现的次数+1,A/=2;
当A%2!=0时,则A对下一个连续素数3不断取模...
以此类推,直到A==1为止。
注意特殊判定,当A本身就是素数时,无法分解,它自己就是其本身的素数分解式。
最后得到A = p1^k1 * p2^k2 * p3^k3 *...* pn^kn.
故 A^B = p1^(k1*B) * p2^(k2*B) *...* pn^(kn*B);
2:A^B的所有约数之和为:
sum = [1+p1+p1^2+...+p1^(a1*B)] * [1+p2+p2^2+...+p2^(a2*B)] *...* [1+pn+pn^2+...+pn^(an*B)].
3: 用递归二分求等比数列1+pi+pi^2+pi^3+...+pi^n:
(1)若n为奇数,一共有偶数项,则:
1 + p + p^2 + p^3 +...+ p^n
= (1+p^(n/2+1)) + p * (1+p^(n/2+1)) +...+ p^(n/2) * (1+p^(n/2+1))
= (1 + p + p^2 +...+ p^(n/2)) * (1 + p^(n/2+1))
上式中红色加粗的前半部分恰好就是原式的一半,那么只需要不断递归二分求和就可以了,后半部分为幂次式,将在下面第4点讲述计算方法。
(2)若n为偶数,一共有奇数项,则:
1 + p + p^2 + p^3 +...+ p^n
= (1+p^(n/2+1)) + p * (1+p^(n/2+1)) +...+ p^(n/2-1) * (1+p^(n/2+1)) + p^(n/2)
= (1 + p + p^2 +...+ p^(n/2-1)) * (1+p^(n/2+1)) + p^(n/2);
上式红色加粗的前半部分恰好就是原式的一半,依然递归求解
4:反复平方法计算幂次式p^n
这是本题关键所在,求n次幂方法的好坏,决定了本题是否TLE。
以p=2,n=8为例
常规是通过连乘法求幂,即2^8=2*2*2*2*2*2*2*2
这样做的要做8次乘法
而反复平方法则不同,
定义幂sq=1,再检查n是否大于0,
While,循环过程若发现n为奇数,则把此时的p值乘到sq
{
n=8>0 ,把p自乘一次, p=p*p=4 ,n取半 n=4
n=4>0 ,再把p自乘一次, p=p*p=16 ,n取半 n=2
n=2>0 ,再把p自乘一次, p=p*p=256 ,n取半 n=1,sq=sq*p
n=1>0 ,再把p自乘一次, p=p*p=256^2 ,n取半 n=0,弹出循环
}
则sq=256就是所求,显然反复平方法只做了3次乘法
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
const int SIZE = 10010;
int yes[SIZE];
int n[SIZE];
int A, B;
void get_prim() //打表法求出所有的素数
{
int m=sqrt(SIZE)+1;
memset(yes,0,sizeof(yes));
for(int i=2;i<=m;i++)
if(!yes[i])
{
for(int j=i*i;j<SIZE;j+=i)
yes[j]=1;
}
}
void factor() //把A进行素数分解,n[i]为分出的系数
{
for(int i=2;i<SIZE;i++)
if(!yes[i])
{
n[i]=0;
while(A%i==0)
{
n[i]++;
A/=i;
}
}
}
//递归求x^y次幂
long long p_mi(int x, long long y)
{
long long a;
if(y==0) return 1;
if(y==1) return x;
if(y%2==1) //y为奇数时有,x^y=((x^((y-1)/2))^2)*x
{
a=p_mi(x,(y-1)/2)%9901;
return ((a*a%9901)*x)%9901;
}
else
{
a=p_mi(x,y/2)%9901;
return (a*a)%9901;
}
}
long long p_sum(int x, long long y)
{
long long k1, k2, t;
if(y==0) return 1;
if(y==1) return (1+x);
if(y%2==1) //求x的最高次数为y的等比数列。当y为奇数,可直接用公式。。。
{
k1=(p_mi(x,y/2+1)+1)%9901;
k2=p_sum(x,y/2)%9901;
return (k1*k2)%9901;
}
else //y为偶数时,则y-1为奇数,求出x^y+p_sum(x,y-1)
{
k1=p_mi(x,y)%9901;
k2=p_sum(x,y-1)%9901;
return (k1+k2)%9901;
}
}
int main()
{
int sum;
get_prim();
while(cin>>A>>B)
{
sum=1;
factor();
for(int i=2;i<SIZE;i++)
{
if(yes[i] || !n[i]) continue;
sum=(sum*p_sum(i,n[i]*B))%9901;
}
if(A!=1) sum=sum*p_sum(A,B)%9901; //处理A为比较大的素数的情况
cout<<sum<<endl;
}
return 0;
}