题目
三角形数序列是由对自然数的连加构造而成的。所以第七个三角形数是 1+2+3+4+5+6+7=28 . 那么三角形数序列中的前十个是:
1,3,6,10,15,21,28,36,45,55,…
下面我们列出前七个三角形数的约数:
1: 1
3: 1,3
6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28
可以看出28是第一个拥有超过5个约数的三角形数。
那么第一个拥有超过500个约数的三角形数是多少?
解题方法
第n个三角形数实质上就是等差数列{ an=n }的前n项和 Sn :
Sn=n(n+1)2
任何一个正整数都可以表示成几个素数的次方的乘积
假设 Pn 表示第n个素数,那么任意正整数可以通过下面的式子获得:
Num=Pk11Pk22Pk33⋯Pknn,n∈N+,kn∈N
而一个正整数拥有的约数个数为:
divisor=(k1+1)(k2+1)⋯(kn+1)
程序
程序中用到的Prime类是我自定义的工具类,因为在做欧拉工程的题目遇到很多素数相关的题目,所以我实现了一个Prime工具类,方便解题。具体的源码以及用法参考我的另一篇文章——《Java工具类 素数类》
public static void solve() {
int[] primeArray = Prime.getPrimeArrayByLength(2000);
int num = 0;
for (int i = 1;; i++) {
// Sn的值
num += i;
int temp = num;
// Sn拥有的约数个数
int divisor = 1;
int j = 0;
for (; temp != 1; j++) {
int count = 0;
// 求kn的值
while (temp % primeArray[j] == 0) {
temp /= primeArray[j];
count++;
}
divisor *= count + 1;
}
if (divisor > 500) {
System.out.println("num " + num + " is first num whose divisors over 500(" + divisor + ")");
break;
}
}
}