欧拉工程第12题 第一个拥有超过500个约数的三角形数是多少

题目

三角形数序列是由对自然数的连加构造而成的。所以第七个三角形数是 1+2+3+4+5+6+7=28 . 那么三角形数序列中的前十个是:

1,3,6,10,15,21,28,36,45,55,

下面我们列出前七个三角形数的约数:
1: 1
3: 1,3
6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28
可以看出28是第一个拥有超过5个约数的三角形数。
那么第一个拥有超过500个约数的三角形数是多少?

解题方法

第n个三角形数实质上就是等差数列{ an=n }的前n项和 Sn

Sn=n(n+1)2

任何一个正整数都可以表示成几个素数的次方的乘积

假设 Pn 表示第n个素数,那么任意正整数可以通过下面的式子获得:

Num=Pk11Pk22Pk33Pknn,nN+knN

而一个正整数拥有的约数个数为:

divisor=(k1+1)(k2+1)(kn+1)

程序

程序中用到的Prime类是我自定义的工具类,因为在做欧拉工程的题目遇到很多素数相关的题目,所以我实现了一个Prime工具类,方便解题。具体的源码以及用法参考我的另一篇文章——《Java工具类 素数类》

public static void solve() {
    int[] primeArray = Prime.getPrimeArrayByLength(2000);
    int num = 0;
    for (int i = 1;; i++) {
        // Sn的值
        num += i;
        int temp = num;
        // Sn拥有的约数个数
        int divisor = 1;
        int j = 0;
        for (; temp != 1; j++) {
            int count = 0;
            // 求kn的值
            while (temp % primeArray[j] == 0) {
                temp /= primeArray[j];
                count++;
            }
            divisor *= count + 1;
        }

        if (divisor > 500) {
            System.out.println("num " + num + " is first num whose divisors over 500(" + divisor + ")");
            break;
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值