清华大学驭风计划课程链接
学堂在线 - 精品在线课程学习平台 (xuetangx.com)
代码和报告均为本人自己实现(实验满分),只展示任务实验结果,如果需要报告或者代码可以私聊博主
有任何疑问或者问题,也欢迎私信博主,大家可以相互讨论交流哟~~
Softmax实现手写数字识别
相关知识点: numpy科学计算包,如向量化操作,广播机制等
1 简介
本次案例中,你需要用python实现Softmax回归方法,用于MNIST手写数字数据集分类任务。你需要完成前向计算loss和参数更新。
你需要首先实现Softmax函数和交叉熵损失函数的计算。

在更新参数的过程中,你需要实现参数梯度的计算,并按照随机梯度下降法来更新参数。

具体计算方法可自行推导
MNIST数据集
MNIST手写数字数据集是机器学习领域中广泛使用的图像分类数据集。它包含60,000个训练样本和10,000个测试样本。这些数字已进行尺寸规格化,并在固定尺寸的图像中居中。每个样本都是一个784×1的矩阵,是从原始的28×28灰度图像转换而来的。MNIST中的数字范围是0到9。下面显示了一些示例。

2. 要求
a) 记录训练和测试的准确率。画出训练损失和准确率曲线;
b) 比较使用和不使用momentum结果的不同,可以从训练时间,收敛性和准确率等方面讨论差异;
c) 调整其他超参数,如学习率,Batchsize等,观察这些超参数如何影响分类性能。写下观察结果并将这些新结果记录在报告中。
3.实验结果
a) 记录训练和测试的准确率 。 画出训练损失和准确率曲线;
&n

最低0.47元/天 解锁文章
3858

被折叠的 条评论
为什么被折叠?



