加密算法
文章平均质量分 81
纯粹的码农
这个作者很懒,什么都没留下…
展开
-
RSA公钥加密算法
本系列将会介绍RSA、离散对数、椭圆曲线三大公钥加密算法,RSA算法将会作为该系列的第一篇。1. 算法产生背景公钥加密或说非对称加密其作用已经不言而喻,在实际中已经得到大量应用,比如HTTPS证书,其中便包含了网站的公钥信息。非对称加密与对称加密最大的区别是,加密与解密使用不同的密钥,通过公钥加密的内容只有通过私钥才能解密,反之亦然。因此,发布者完全可以把公钥公布于众,使发送者便于查询。与原创 2011-12-20 17:58:41 · 18403 阅读 · 2 评论 -
幂取模算法
在众多的加密算法中都需要进行幂的取模运算,比如在RSA算法中需要计算ne mod N,我们称之为幂模算法,其中:N=p*q(p,q为大素数)n为加密数据,ne为公钥,d为私钥,满足关系ed≡1 (mod (p-1)*(q-1))其中n,e都是非常大的数,这样计算ne mod N就需要一些新方法,其计算方式也关系到RSA的效率问题。对一般的幂模运算:ab mod m,存在下面三种算法原创 2011-12-22 01:29:11 · 21471 阅读 · 3 评论 -
离散对数加密算法
与前章所述RSA公钥加密算法类似,离散对数加密算法也属于公钥加密算法,RSA依赖大数因数分解的困难性,而离散对数则依赖有限域上的离散指数的难计算性保障其安全。目前三大公钥加密算法(RSA、离散对数、椭圆曲线)都依赖数论与群论的知识,在介绍具体的算法前有必要再简介下所关联的数学知识。1.欧拉公式与φ(m)特性在RSA公钥加密算法中已经提到欧拉公式、费马小定理,可以说是三大加密算法的基础,原创 2011-12-28 14:22:30 · 19732 阅读 · 2 评论