模型训练
chen_holy
“你要是愿意, 我就永远爱你”——王小波《爱你就像爱生命》
展开
-
笔记 - 模型评估:K折交叉验证
一种数据利用率较高的模型训练评估方法模型训练评估模型超参的选择实现流程不唯一,主要体现在对数据的利用率上现在对模型进行训练,评估采用10折交叉验证方法,需要对模型训练10次,测试10次,计算10次相关指标将数据集切分成10份数据集,第一次保留第一份数据集为测试集,剩下的数据用来训练模型第二次保留第二份数据集为测试集,剩下的数据用来训练模型...资料:机器学习之模型选...原创 2019-06-12 16:58:19 · 1185 阅读 · 0 评论 -
笔记 - 模型训练:小批量梯度下降与小批量随机梯度下降
小批量梯度下降 n_batch = int(len(X_train) / batch_size) for epoch in range(n_epochs): for i in range(n_batch): sess.run(training_op, feed_dict={ X: X_train[i*batc...原创 2019-06-10 20:52:46 · 534 阅读 · 0 评论 -
笔记 - 模型训练:监控
打印 训练loss与测试loss print("Epoch", epoch, "MSE = ", sess.run(mse, feed_dict={ X: X_train, y: y_train })) print("Epoch", epoch, "MSE = ", sess.run(mse, feed_di...原创 2019-06-11 10:22:01 · 347 阅读 · 0 评论 -
笔记 - 模型训练:保存读取使用模型
保存模型# 创建Saver()节点saver = tf.train.Saver()# 训练过程中保存节点save_path = saver.save(sess, "./ckpt/my_model.ckpt", global_step=epoch)# 保存最终节点save_path = saver.save(sess, "./ckpt/my_model_final.ckpt")读...原创 2019-06-11 10:57:48 · 523 阅读 · 0 评论 -
笔记 - 神经网络:参数初始化方式
服从均匀分布的初始化random_uniform自定义区间的均匀分布tf.random_uniform(shape = (n_input, n_output), minval=start, maxval=end, dtype=tf.float32)rand[0,1)区间的均匀分布# 10行一列X = np.random.rand(10,1)"""...原创 2019-06-06 17:54:38 · 716 阅读 · 0 评论 -
笔记 - 模型训练:正则Loss
前置add_to_collectionimport tensorflow as tftf.add_to_collection("reg_losses", 1.0)tf.add_to_collection("reg_losses", 1.0)loss = tf.get_collection("reg_losses")with tf.Session() as sess: pr...原创 2019-06-11 14:55:58 · 1094 阅读 · 0 评论 -
笔记 - 卷积网络:卷积输出张量shape计算
前置:影响shape形状的因素:1.卷积核大小2.stride步长3.padding模式公式:K – 卷积核数量F – 卷积核大小S – 步长P – 外围填充的层数运用显然valid模式下,直接卷,不够就丢弃我推导的valid模式下的计算方式(以 W 举例):W2 = (W1 - F)/S + 1SAME模式如何确定P利用公式1计算...原创 2019-06-11 16:13:07 · 4637 阅读 · 0 评论 -
笔记 - tensorflow中 Variable 与 get_variable 的用法
莫烦 scope 命名方法我们为什么要对变量命名举个例子:在迁移学习中我们是通过变量名加载相应的值# restore variables# redefine the same shape and same type for your variablesW = tf.Variable(np.arange(6).reshape((2, 3)), dtype=tf.float32, n...原创 2019-08-07 12:52:20 · 601 阅读 · 0 评论